DOI QR코드

DOI QR Code

A Study on CH4-SCR Reaction Characteristics of Mg-added Composite Alumina Pt Catalysts

Mg이 첨가된 복합 알루미나 Pt촉매의 CH4-SCR 반응특성에 관한 연구

  • Won, Jong Min (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 원종민 (경기대학교 환경에너지공학과 일반대학원) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2016.11.22
  • Accepted : 2016.12.20
  • Published : 2017.02.10

Abstract

In this study, a catalyst based on $Pt/Al_2O_3$ supported on Mg was prepared by a wet impregnation method to investigate the $CH_4-SCR$ reaction characteristics of various alumina supports. Alumina supported on $Pt/Al_2O_3$ catalyst was converted to an $Al_2O_3$ composite, and when Mg was added, oxygen species of the active metal Pt were controlled due to electrophobic characteristics. Oxygen-controlled Pt used as a reducing agent inhibited the oxidation of $CH_4$ to $CO_2$. The addition of Mg also promoted the adsorption of NO species and the conversion of NO to $NO_2$ due to the NOx storage property on the catalyst surface.

본 연구에서는 다양한 알루미나 지지체의 $CH_4-SCR$ 반응특성을 확인하기 위하여 $Pt/Al_2O_3$를 기본으로 한 촉매에 Mg을 담지하여 습식함침법으로 제조하였다. $Pt/Al_2O_3$ 촉매에 지지체인 알루미나를 복합형태(composite-$Al_2O_3$)로 바꾸고, Mg을 담지시킬 경우 electrophobic 특성으로 인해 활성금속 Pt의 산소종을 제어하였다. 산소종이 제어된 Pt는 환원제로 사용되는 $CH_4$에서 $CO_2$로의 산화를 억제시킨다. 또한 Mg의 첨가는 촉매표면에서의 NOx storage 특성으로 인한 NO species 흡착 증진과 NO의 $NO_2$로의 전환을 증진시켰다.

Keywords

References

  1. J. N. Armor, Environmental catalysis, Appl. Catal. B, 1, 221-256 (1992). https://doi.org/10.1016/0926-3373(92)80051-Z
  2. S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, and W. Weisweiler, Effect of oxygen concentration on the NOx reduction with ammonia over $V_2O_5-WO_3/TiO_2$ catalyst, Catal. Today, 208, 208-214 (2006).
  3. J. Chen and R. Yang, Mechanism of poisoning of the $V_2O_5/TiO_2$ catalyst for the reduction of NO by $NH_3$, J. Catal., 125, 411-420 (1990). https://doi.org/10.1016/0021-9517(90)90314-A
  4. M. Iwamoto and H. Hamada, Removal of nitrogen monoxide from exhaust gases through novel catalytic prosesses, Catal. Today, 10, 57-71 (1991). https://doi.org/10.1016/0920-5861(91)80074-J
  5. K. N. Rao and H. P. Ha, $SO_2$ promoted alkali metal doped Ag/$Al_2O_3$ catalysts for $CH_4$-SCR of NOx, Appl. Catal. A, 433, 162-169 (1992).
  6. F. Lonyi, J. Valyon, L. Gutierrez, M. A. Ulla, and E. A. Lombardo, The SCR of NO with $CH_4$ over Co-, Co,Pt-, and H-mordenite catalysts, Appl. Catal. B, 73, 1-10 (2007). https://doi.org/10.1016/j.apcatb.2006.11.017
  7. J. M. Gsrcia-Cortes, J. Perez-Ramírez, J. N. Rouzaud, A. R. Vaccaro, M. J. Illan-omez, and C. Salinas-Martinez de Lecea, On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts, On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts, J. Catal., 218, 111-122 (2003). https://doi.org/10.1016/S0021-9517(03)00088-5
  8. M. Konsolakisa, I. V. Yentekakisa, G. Pekridisb, N. Kaklidisb, A. C. Psarrasc, and G. E. Marnellos, Insights into the role of $SO_2\;and\;H_2O$ on the surface characteristics and de-$N_2O$ efficiency of Pd/$Al_2O_3$ catalysts during $N_2O$ decomposition in the presence of $CH_4\;and\;O_2$ excess, Appl. Catal. B, 138, 191-198 (2013).
  9. H. Zhanga, L. Li, N. Li, A. Wang, and X. Wang, In situ FT-IR investigation on the selective catalytic reduction of NO with $CH_4$ over Pd/sulfated alumina catalyst, Appl. Catal. B, 110, 171-177 (2010).
  10. K. Krishna and M. Makkee, Soot oxidation over NOx storage catalysts: Activity and deactivation, Catal. Today, 114, 48-56 (2006). https://doi.org/10.1016/j.cattod.2006.02.009
  11. I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, F. Prinetto, and G. Ghiotti, NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments, J. Catal., 222, 377-388 (2004). https://doi.org/10.1016/j.jcat.2003.11.013
  12. K. Shimizu, Y. Saito, T. Nobukawa, N. Miyoshi, and A. Satsuma, Effect of supports on formation and reduction rate of stored nitrates on NSR catalysts as investigated by in situ FT/IR, Catal. Today, 139, 24-28 (2008) https://doi.org/10.1016/j.cattod.2008.08.004
  13. I. S. Pieta, M. Garcia-Dieguez, C. Herrera, M. A. Larrubia, and L. J. Alemany, In situ DRIFT-TRM study of simultaneous NOx and soot removal over Pt-Ba and Pt-K NSR catalysts, J. Catal., 270, 256-267 (2010). https://doi.org/10.1016/j.jcat.2010.01.003
  14. L. Castoldi, N. Artioli, R. Matarrese, L. Lietti, and P. Forzatti, Study of DPNR catalysts for combined soot oxidation and NOx reduction, Catal. Today, 157, 384-389 (2010). https://doi.org/10.1016/j.cattod.2010.03.022
  15. L. Castoldi, R. Matarrese, L. Lietti, and P. Forzatti, Simultaneous removal of NOx and soot on Pt-Ba/$Al_2O_3$ NSR catalysts, Appl. Catal. B, 64, 25-34 (2006). https://doi.org/10.1016/j.apcatb.2005.10.015
  16. L. Shuang, W. Xiaodong, W. Duan, and R. Rui, NOx-assisted soot oxidation on Pt-Mg/$Al_2O_3$ catalysts: Magnesium precursor, Pt particle size, and Pt-Mg interaction, Ind. Eng. Chem. Res., 51, 2271-2279 (2012). https://doi.org/10.1021/ie202239c
  17. S. S. Kim, S. H. Choi, S. M. Lee, and S. C. Hong, Enhanced catalytic activity of Pt/$Al_2O_3$ on the $CH_4$ SCR, J. Ind. Eng. Chem., 18, 272-276 (2012). https://doi.org/10.1016/j.jiec.2011.11.041
  18. Y. Cesteros, P. Salagre, F. Medina, and J. E. Sueiras, Preparation and characterization of several high-area $NiAl_2O_4$ spinels. Study of their reducibility, Chem. Mater., 12, 331-335 (2000). https://doi.org/10.1021/cm990154h
  19. F. Barath, M. Turki, V. Keller, and G. Maire, Catalytic activity of reduced $MoO_3/{\alpha}-Al_2O_3$ for hexanes reforming: I. Preparation, characterization, and X-ray photoelectron spectroscopy studies, J. Catal., 185, 1-11 (1999). https://doi.org/10.1006/jcat.1999.2478
  20. H. Wang, H. B. Guan, L. Y. Duan, and Y. C. Xie, Dispersion of MgO on $Pt/{\gamma}-Al_2O_3$ and the threshold effect in NOx storage, Catal. Commun., 7, 802-806 (2006). https://doi.org/10.1016/j.catcom.2006.03.003
  21. L. Olsson and E. Fridell, The influence of Pt oxide formation and Pt dispersion on the reactions $NO_2\;\Leftrightarrow\;NO\;+\;1/2\;O_2\;over\;Pt/Al_2O_3\;and\;Pt/BaO/Al_2O_3$, J. Catal., 210, 340-353 (2002). https://doi.org/10.1006/jcat.2002.3698
  22. T. Toops, D. Smith, W. Epling, J. Parks, and W. Partridge, Quantified NOx adsorption on Pt/K/gamma-$Al_2O_3$ and the effects of $CO_2\;and\;H_2O$, Appl. Catal. B, 58, 255-264 (2005). https://doi.org/10.1016/j.apcatb.2004.10.022
  23. D. G. Blackmond and J. G. Goodwin, In situ Fourier transform infrared spectroscopy study of HY cracking catalysts: Coke formation and the nature of the active sites, J. Catal., 78, 34-43 (1982). https://doi.org/10.1016/0021-9517(82)90283-4
  24. G. Matrajt, J. Borg, P. I. Raynal, Z. Djouadi1, L. d'Hendecourt, G. Flynn, and D. Deboffle, FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium, Astron. Astrophys., 416, 983-990 (2004). https://doi.org/10.1051/0004-6361:20034526
  25. H. Yoshida, S. Nonoyama, Y. Yazawa, and T. Hattori, Stabilization of high oxidation state of platinum over basic support oxide examined by in situ laboratory XANES and temperature programmed desorption of oxygen, Catal. Today, 153, 156-161 (2010). https://doi.org/10.1016/j.cattod.2010.02.012
  26. P. T. Fanson, M. R. Horton, W. N. Delgass, and J. Lauterbach, FTIR analysis of storage behavior and sulfur tolerance in barium-based NOx storage and reduction (NSR) catalysts, Appl. Catal. B, 46, 393-413 (2003). https://doi.org/10.1016/S0926-3373(03)00275-3