DOI QR코드

DOI QR Code

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure

나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용

  • Min Sik, Kil (Department of Chemical Engineering, Kangwon National University) ;
  • Min Jae, Kim (Department of Chemical Engineering, Kangwon National University) ;
  • Jo Hee, Yoon (Department of Chemical Engineering, Kangwon National University) ;
  • Jinwu, Jang (Department of Chemical Engineering, Kangwon National University) ;
  • Kyoung G., Lee (National Nanofab Center, Center for Nano Bio Development) ;
  • Bong Gill, Choi (Department of Chemical Engineering, Kangwon National University)
  • 길민식 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 김민재 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 윤조희 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 장진우 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 이경균 (나노종합기술원 나노바이오센터) ;
  • 최봉길 (강원대학교(삼척캠퍼스) 화학공학과)
  • Received : 2022.11.15
  • Accepted : 2022.12.06
  • Published : 2023.02.10

Abstract

In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

본 논문에서는 용액의 이온 농도 측정이 가능한 나피온 폴리머(Nafion polymer) 코팅 기반 2상 금 전극의 임피던스(Impedance) 센서를 개발하였다. 스퍼터링(Sputtering) 공정을 통해서 제작된 금 전극의 표면을 나피온 폴리머를 사용하여 표면 개질 하였다. 상기 제작된 전극은 분극 현상 제어가 가능하여 전기화학적 신호를 안정적으로 측정할 수 있도록 하였다. 분광학과 전자주사현미경 관찰을 통하여 박막의 나피온 폴리머 코팅을 확인하였다. 나피온 코팅이 된 전극은 기존 금 전극에 비해 안정적인 임피던스 신호를 보여 주었으며, 표준 염화나트륨(NaCl) 용액 사용 시 임피던스 센서의 신뢰성 높은 검정 곡선(R2 = 0.983)을 나타내었다. 또한, 임피던스 센서는 상용화 전도도 장치와 인공 눈물의 이온 농도 측정 비교 실험을 진행하였으며, 유사한 결과값을 확인하였다.

Keywords

Acknowledgement

이 성과는 2020년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된연구임. (NRF-2021R1A2C1009926).

References

  1. M. Packer, Refractive surgery current status: Expanding options, Expert Rev. Ophthalmol., 17, 231-232 (2022). https://doi.org/10.1080/17469899.2022.2108405
  2. T. Kim, J. L. A. del Barrio, M. Wilkins, B. Cochener, and M. Ang, Refractive surgery, Lancet, 393, 2085-2098 (2019). https://doi.org/10.1016/s0140-6736(18)33209-4
  3. J. Rameke, J. R. Evans, E. Habtamu, N. Mwangi, J. C. Silva, B. K. Swenor, N. Congdon, H. B. Faal, A. Foster, D. s. Friedman, S. Gichuhi, J. B. Jonas, P. T. Khaw, F. Kyari, G. V. S. Murthy, N. Wang, T. Y. Wong, R. Wormald, M. Yusufu, H. Taylor, S. Resnikoff, S. K. West, and M. J. Burton, Grand challenges in global eye health: A global prioritisation process using Delphi method, Lancet Healthy Longev., 3, e31-e41 (2022). https://doi.org/10.1016/S2666-7568(21)00302-0
  4. Y. H. Jung, B. Park, J. U. Kim, and T. Kim, Bioinspired electronics for artificial sensory systems, Adv. Mater., 31, 1803637 (2019).
  5. J. Enoch, L. McDonald, L. Jones, P. R. Jones, and D. P. Crabb, Evaluating whether sight is the most valued sense, JAMA Ophthalmol., 137, 1317-1320 (2019).
  6. D. L. Weiler, Thyroid eye disease: A review, Clin. Exp. Optom., 100, 20-25 (2017). https://doi.org/10.1111/cxo.12472
  7. D. Pieragostino, M. D'Alessandro, M. di Ioia, C. Di Ilio, P. Sacchetta, P. Del Boccio, Unraveling the molecular repertoire of tears as a source of biomarkers: Beyond ocular diseases, Proteomics Clin. Appl., 9, 169-186 (2014). https://doi.org/10.1002/prca.201400084
  8. S. Kim, H. Jeon, S. Park, D. Y. Lee, and E. Chung, Tear glucose measurement by reflectance spectrum of a nanoparticle embedded contact lens, Sci. Rep., 10, 1-8 (2020). https://doi.org/10.1038/s41598-019-56847-4
  9. N. H. Amil-Bangsa, B. Mohd-Ali, B. Ishak, C. N. N. Abdul-Aziz, N. F. Ngah, H. Hashim, and A. R. Ghazali, Total protein concentration and tumor necrosis factor α in tears of nonproliferative diabetic retinopathy, Optom. Sci., 96, 934-939 (2019). https://doi.org/10.1097/OPX.0000000000001456
  10. A. K. Yetisen, N. Jiang, A. Tamayol, G. U. Ruiz-Esparza, Y. S. Zhang, S. Medina-Pando, A. Gupta, J. S. Wolffsohn, H. Butt, A. Khademhosseini, and S. Yun, Paper-based microfluidic system for tear electrolyte analysis, Lab. Chip, 17, 1137-1148 (2017). https://doi.org/10.1039/C6LC01450J
  11. R. Moreddu, M. Elsherif, H. Adams, D. Moschou, M. F. Cordeiro, J. S. Wolffsohn, D. Vigolo, H. Butt, J. M. Cooper, and A. K. Yetisen, Integration of paper microfluidic sensors into contact lenses for tear fluid analysis, Lab. Chip, 20, 3970-3979 (2020). https://doi.org/10.1039/d0lc00438c
  12. J. T. La Belle, A. Adams, C. Lin, E. Engelschall, B. Pratt, and C. B Cook, Self-monitoring of tear glucose: The development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose, Chem. Commun., 52, 9197-9204 (2016). https://doi.org/10.1039/c6cc03609k
  13. H. Kim, P. Kim, H, Yoo, and C. Kim, Comparison of tear proteins between healthy and early diabetic retinopathy patients, Clin. Biochem., 45, 60-67 (2012). https://doi.org/10.1016/j.clinbiochem.2011.10.006
  14. G. Iannella, G. Di Nardo, R. Plateroti, P. Rossi, A. M. Plateroti, P. Mariani, and G. Magliulo, Investigation of pepsin in tears of children with laryngopharyngeal reflux disease, Int. J. Pediatr. Otorhinolaryngol., 79, 2312-2315 (2015). https://doi.org/10.1016/j.ijporl.2015.10.034
  15. M. N. Akib, S. R. Pirade, S. R. Syawal, M. M. Fauzan, H. Eka, and A. Seweng, Association between prolonged use of smartphone and the incidence of dry eye among junior high school students, Clin. Epidemiol. Glob. Health, 11, 100761 (2021).
  16. J. Y. Hyon, H. K. Yang, and S. B. Han, Association between dry eye disease and psychological stress among paramedical workers in Korea, Sci. Rep., 9, 1-6 (2019). https://doi.org/10.1038/s41598-018-37186-2
  17. A. Denoyer, E. Landman, L. Trinh, J, Faure, F, Auclin, and C. Baudouin, Dry eye disease after refractive surgery: Comparative outcomes of small incision lenticule extraction versus LASIK, Ophthalmology, 122, 669-676 (2015). https://doi.org/10.1016/j.ophtha.2014.10.004
  18. S. Um, H. H. Kim, H. K. Lee, J. S. Song, and H. C. Kim, Spatial epidemiology of dry eye disease: findings from South Korea, Int. J. Health Geogr., 13, 1-9 (2014). https://doi.org/10.1186/1476-072X-13-1
  19. H. Hashemi, M. Khabazkhoob, A. Kheirkhah, M. H. Emamian, S. Mehravaran, M. Shariati, and A. Fotouhi, Prevalence of dry eye syndrome in an adult population, Clin. Experiment. Ophthalmol., 42, 242-248 (2014). https://doi.org/10.1111/ceo.12183
  20. T. Su and S. Chang, Normalized ocular surface temperature models for tear film characteristics and dry eye disease evaluation, Ocul. Surf., 19, 74-82 (2021). https://doi.org/10.1016/j.jtos.2020.04.002
  21. M. A. Lemp, A. J. Bron, C. Baudouin, J. M. Benitez del Castillo, D. Geffen, J. Tauber. G. N. Foulks. J. S. Pepose, and B. D. Sullivan, Tear osmolarity in the diagnosis and management of dry eye disease, Am. J. Ophthalmol., 151, 792-798 (2011). https://doi.org/10.1016/j.ajo.2010.10.032
  22. A. J. Bron, Diagnosis of dry eye, Surv. Ophthalmol., 45, S221-S226 (2001). https://doi.org/10.1016/S0039-6257(00)00201-0
  23. J. Park, Y. Choi, G. Han, E. Shin, J. Han, T. Chung, and D. H. Lim, Evaluation of tear osmolarity measured by I-Pen osmolarity system in patients with dry eye, Sci. Rep., 11, 1-7 (2021). https://doi.org/10.1038/s41598-020-79139-8
  24. P. Versura, V. Profazio, E. C. Campos, Performance of tear osmolarity compared to previous diagnostic tests for dry eye diseases, Curr. Eye Res., 35, 553-564 (2010). https://doi.org/10.3109/02713683.2010.484557
  25. M. Suzuki, M. L. Massingale, F. Ye, J. Godbold, T. Elfassy, M. Vallabhajosyula, and P. A. Asbell, Tear osmolarity as a biomarker for dry eye disease severity, Investig. Ophthalmol. Vis. Sci., 51, 4557-4561 (2010). https://doi.org/10.1167/iovs.09-4596
  26. P. Versura and E. C. Campos, TearLab® Osmolarity System for diagnosing dry eye, Expert Rev. Mol. Diagn., 13, 119-129 (2013). https://doi.org/10.1586/erm.12.142
  27. A. Grattoni, M. Merlo, and M. Ferrari, Osmotic pressure beyond concentration restrictions, J. Phys. Chem. B, 111, 11770-11775 (2007). https://doi.org/10.1021/jp075834j