DOI QR코드

DOI QR Code

The Theoretical Review of the Feature and Application of Science Teaching Models

과학 교수 모형의 특징과 적용에 대한 이론적 고찰

  • Received : 2009.11.26
  • Accepted : 2010.06.28
  • Published : 2010.08.31

Abstract

The purpose of the study was to suggest the characteristics and goals of the science teaching model for use as criteria in selecting the appropriate teaching model for science in secondary schools. These characteristics and the goals have been organized based on the analyses of the literature on the teaching and/or instructional model. The teaching models have been classified into four areas, and the characteristics and goals of each area have been summarized as follows: $\cdot$ Traditional models: teaching of scientific knowledge through lectures, acquisition of scientific knowledge through discovery, acquisition of inquiry process skills through inquiry-based teaching/learning $\cdot$ Transitional models: demonstration and discovery as teaching strategies, acquisition of inquiry process skills through inquiry approach, acquisition and change of scientific knowledge $\cdot$ Modernistic model - conceptual change models: differentiation of scientific knowledge, exchange of misconceptions for scientific concepts - learning cycle models: conceptual differentiation, exchange of misconceptions, acquisition of science process skills Also described in this paper are the model's characteristics and goals that can be used as the criteria for selecting the appropriate teaching model for the subject that will be taught.

이 연구는 현재 중 고등학교에서 적용하고 있는 교수 모형을 선택할 때 그 준거로 활용할 수 있는 교수 모형의 특성과 목적을 제시하고자 수행하였다. 교수 모형의 특성과 목적은 수업 모형과 교수 모형에 관한 문헌을 분석하고, 그 결과를 근거로 정리해 제시하였다. 이 연구에서는 지금까지 제시된 수업 모형을 교수 모형에 포함시키고, 교수 모형을 전통적 모형, 과도기적 모형, 현대적 모형으로 분류하고, 현대적 모형을 다시 그 대상에 따라 개념변화 모형과 순환학습 모형으로 구분하였다. 이 논문에서 제시한 네 가지 교수모형의 특성과 목적을 요약하면 다음과 같다. $\cdot$ 전통적 모형: 강의를 통한 과학지식의 교수, 발견법을 통한 과학지식의 습득, 탐구중심 교수-학습 과정을 통한 과학적 탐구 과정 기능의 습득 및 과학적 방법과 탐구 방법을 적용한 문제해결 $\cdot$ 과도기적 모형: 시범실험, 발견법, 탐구적 접근법 을 통한 탐구 과정 기능의 습득, 과학지식의 습득과 분화 및 발달 $\cdot$ 현대적 모형 - 개념변화 모형: 탐구중심 접근법을 통한 과학지식의 분화, 과학개념에 의한 과학 대체 개념의 교환 - 순환학습 모형: 발견 및 탐구를 통한 개념의 분화 및 대체 개념의 교환, 과학적 탐구 과정 기능의 습득 이와 같은 과학 교수 모형의 영역별 특성과 목적은 교수-학습의 목표와 주제에 적절한 교수 모형의 범주를 확인할 때 적용할 수 있다. 과학 교수-학습 현장에서 실제로 적용할 교수 모형을 선정할 때는, 교수할 주제 및 내용과 그 목표에 적절한 영역별 교수 모형의 특성과 목적을 확인한 다음, 그 영역에서 적절한 교수모형을 선정하는 것이 바람직하다. 이 논문에는 실제의 교수 모형을 선정할 때 적용할 수 있는 준거가 각 교수 모형의 특성과 목적의 형태로 기술되어 있다.

Keywords

References

  1. 조희형, 김희경, 윤희숙, 이기영 (2009). 과학교육 의 이론과 실제, 제3판. 교육과학사.
  2. Abell, S. K. & Lederman, N. G. (eds.) (2007). Handbook of research on science education. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  3. Abraham, M. R. (1992). Instructional strategies designed to teach science concepts. In F. Lawrenz, K. Cochran, J. Krajcik, & P. Simpson (eds.) Research matter...to the science teacher, NARST mo, graph, no. 5. Manhattan, KS: NARST.
  4. Alexander, P. A. & Winne, P. H. (2006) (eds.). Handbook of educational psychology, 2nd ed. Mahwash, NJ: Lawrence Erlbaum Associates, Publishers.
  5. Alsop, S. & Hicks, K. (2001). Teaching science: A handbook for primary & secondary school teachers. London: Kogan page Limited.
  6. Anderson, R. D. (2007). Inquiry as an organizing theme for science curricula. In S. K. Abell & N. G. Ledrman (eds.) Handbook of research on science education. Mahwah, New York: Lawrence Erlbaum Associates, Publishers.
  7. Arends, R. I. (2009). Learning to teach, 8th ed. Boston: McGraw Hill.
  8. Atkin, J. M. & Karplus, R. (1962). Discovery or invention? The Science Teacher, 29(5), 45- 47. In R. G. Fuller, ed. (2002). A love of discovery: Science education-The second career of Robert Karplus.
  9. Ausubel, D. P. (2000). The acquisition and retention of knowledge: a cognitive view. Boston: Kluwer Academic Publishers.
  10. Barman, C. R. (1996). Bridging the gap between the old and the new: Helping teachers move towards a new vision of science education. In J. Rhoton. & P. Bowers. (eds.) Issues in science education. NSTA.
  11. Bentley, M., Ebert, C., & Ebert, E. S. (2000). The natural investigator: A constructivist approach to teaching elementary and middle school science. Belmont, CA: Wadsworth.
  12. Bereiter, C. & Scardamalia, M. (2006) Education for the knowledge age: Designcentered models of teaching and instruction. In P. A. Alexander & P. H. Winne (eds.) Handbook of educational psychology, 2nd ed. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  13. Biological Science Curriculum Study(BSCS) (1993). Developing biological literacy: A guide to developing secondary and post-secondary biology curricula. Dubuque, Iowa: Kendall/Hunt Publishing Company.
  14. Bruner, J. S. (1960). The process of education. Cambridge: Harvard University Press.
  15. Bruner, J. S. (1968). Toward a theory of instruction. New York: W. W. Norton & Company, Inc.
  16. Bybee, R. W. (1997). Achieving sicentific literacy: From purposes to practices. Portsmouth, NH: Heinemann.
  17. Bybee, R. W., Powell, J. C., & Trowbridge, L. W. (2008). Teaching secondary school science: Strategies for developing scientific literacy, 9th ed. Upper Saddle River, New Jersey: Pearson.
  18. Cain, S. E. (2002). Sciencing, 4th ed. Columbus, OH: Merill.
  19. Carey, S. (1985). Conceptual change in childhood. London: A Bradford Book.
  20. Champagne, A. B., Gunstone, R. F., & Klopfer, L. E. (1985). Instructional consequences of students' knowledge about physical phenomena. In L. H. T. West & A. L. Pines. (eds.) Cognitive structure and conceptual change. New York: Academic Press, Inc.
  21. Champagne, A. B., Klopfer, L. E., & Anderson, J. H. (1980). Factors influencing the learning classical mechanics. American Journal of Physics, 48(12), 1074-1076. https://doi.org/10.1119/1.12290
  22. Chiappetta, E. L. & Koballa, T. R. (2010). Science instruction in the middle and secondary schools, 7th ed. Upper Saddle River, New Jersey: Merrill.
  23. Cosgrove, M. & Osborne, R. (1985). Lesson frameworks for changing children's ideas. In R. Osborne & P. Freyberg. Learning in science: The implications of children's science. London: Heinemann..
  24. Driver, R. (1982). Children's learning in science. Educational Analysis, 4(2), 69-79.
  25. Driver, R. (1987). Changing conceptions. Prepared for international seminar, adolescent development and school science, King's Colllege, London, September 13-17.
  26. Dunkhase, J. A. (2003). The coupledinquiry cycle: A teacher concerns-based model for effective student inquiry. Science Educator, 12(1), 11-15.
  27. Dykstra, D. I. (2005). cited from J. Hassard & M. Dias (2009). The art of teaching science: Inquiry and innovation in middle school and high school, 2nd ed. New York and London: Routledge.
  28. Ebenezer, J. V. & Haggerty, S. M. (1999). Becoming a secondary school science teacher. Upper Saddle River, New Jersey: Merill.
  29. Eggen, P. D. & Kauchak, D. P. (2006). Strategies and models for teachers: teaching content and thinking skills, 4th ed. Boston: Pearson.
  30. Eisenkraft, A. (2003). Expanding the 5E model: A proposed 7E model emphasizes "transfer of learning" and the importance of eliciting prior understanding. The Science Teacher, 70(6), 56-59.
  31. Erickson, G. L. (1979). Children's conceptions of heat and temperature. Science Education, 63, 221-230. https://doi.org/10.1002/sce.3730630210
  32. Freyberg, P. & Osborne, R. (1985). Assumptions about teaching and learning. In R. Osborne & P. Freyberg. Learning in science: The implications of children's science. London: Heinemann.
  33. Gallagher, J. J. (2007). Teaching science for understanding: A practical guide for middle and high school teachers. Upper Saddle River, New Jersey: Merrill.
  34. Gunter, M. A., Estes, T. H., & Mintz, S. L. (2007). Instruction: A models approach, 5th ed. New York: Pearson.
  35. Hashweh, M. (1986). Toward an explanation of conceptual change. European Journal of Science Education, 8(3), 229-249. https://doi.org/10.1080/0140528860080301
  36. Hergenhahn, B. R. & Olson, M. H. (2005). An introduction to theories of learning, 7th ed. Upper Saddler River, New Jersey: Prentice- Hall, Inc.
  37. Herr, N. (2008). The sourcebook for teaching science: Strategies, activities, and instructional resources. San Franisco, CA: John Wiley & Sons, Inc.
  38. Hill, A. M. & Smith, H. A. (2005). Problembased contextualized learning. In S. Alsop, L. Bencze, E. Pedretti (eds.) Analyzing exemplary science teaching. Berkshire, Open University Press.
  39. Joyce, B., Weil, M., & Calhoun, E. (2009). Models of teaching, 7th ed. Boston: Pearson.
  40. Karplus, R. (1977). Science teaching and the development of reasoning. Journal of Research in Science Teaching, 14(2), 169-175. In R. G. Fuller (ed.) (2002) A love of discovery: Science education - The second career of Robert Karplus. New York: Kluwer Academic. https://doi.org/10.1002/tea.3660140212
  41. Lawson, A. E. (1991). Exploring growth (& mitosis) through a learning cycle. The American Biology Teacher, 53(2), 107-110. https://doi.org/10.2307/4449232
  42. Lawson, A. (1995). Scientific teaching and the development of thinking. Belmont, CA: Wadsworth Publishing Company.
  43. Lawson, A. E. (2002). The learning cycle. In R. G. Fuller (ed.) (2002) A love of discovery: Science education - The second career of Robert Karplus. New York: Kluwer Academic.
  44. Lawson, A. E. (2010). Teaching inquiry science in middle and secondary schools. Los Angeles: SAGE.
  45. Lee, C. A. (2003). Learning cycle inquiry into plant nutrition. The American Biology Teacher, 65(2), 136-141. https://doi.org/10.1662/0002-7685(2003)065[0136:ALCIIP]2.0.CO;2
  46. Lunetta, V. N., Hofstein, A., & Clough, M. P. (2007). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. In S. K. Abell & N. G. Lederman (eds.) Handbook of research on science education. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  47. Martin, R., Sexton, C., & Franklin, T. (2009). Teaching science for all children, 5th ed. Boston: Pearson.
  48. Martin, R., Sexton, C., & Gerlovich, J. (2002). Teaching science for all children: Methods for constructing understanding. 2nd ed. Boston: Allyn and Bacon.
  49. Nussbaum, J. & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Towards a principled teaching strategy. Instructional Science 11, 183-200. https://doi.org/10.1007/BF00414279
  50. Osborne, R. J. & Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 489-508. https://doi.org/10.1002/sce.3730670406
  51. Pavitt, C. & Curtis, E. (1994). Small group discussion: A theoretical approach, 2nd ed. Scottsdale, Arizona: Gorsuch Scarisbrick, Publisher.
  52. Renner, J. (1982). The power of purpose. Science Education, 66(5), 709-716. https://doi.org/10.1002/sce.3730660507
  53. Schwab, J. J. (1966). The teaching of science as inquiry. In J. J. Schwab & P. F. Brandwein(eds.) The teaching of science. Cambridge: Harvard University Press.
  54. Science Curriculum Improvement Study(SCIS) (1974). SCIS teacher's handbook. Berkley, CA: University of California.
  55. Settlage, J. & Southerland, S. A. (2007). Teaching science to every child: Using culture as a starting point. New York: Routledge.
  56. Treagust, D. F. (2007). General instructional methods and strategies. In S. K. Abell & N. G. Lederman (eds.) Handbook of research on science education. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  57. Treagust, D. F., Duit, R., & Fraser, B. J. (1996). Improving teaching and learning in science and mathematics. New York: Teachers College Press.
  58. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University Press.
  59. West, L. H. T. & Pines, A. L. (1985). Introduction. In L. H. T. West & A. L. Pines. (eds.) Cognitive structure and conceptual change. New York: Academic Press, Inc.
  60. White, T. T. (1988). Learning science. Oxford: Basil Blackwell.
  61. White, R. & Gunstone, R. (1992). Probing understanding. London: The Falmer Press.
  62. Wittrock, M. C. (1974). Learning as a generative processes. Educational Psychologist, 11(2), 87-95. https://doi.org/10.1080/00461527409529129
  63. Wittrock, M. C. (1985). Learning science by generating new conceptions form old ideas. In L. H. T. West & A. L. Pines. eds. Cognitive structure and conceptual change. New York: Academic Press, Inc.