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Abstract—Given a closed-source program, such as most of
proprietary software and viruses, binary code analysis is in-
dispensable for many tasks, such as code plagiarism detection
and malware analysis. Today, source code is very often compiled
Jor various architectures, making cross-architecture binary code
analysis increasingly important. A binary, after being disassem-
bled, is expressed in an assembly language. Thus, recent work
starts exploring Natural Language Processing (NLP) inspired
binary code analysis. In NLP, words are usually represented in
high-dimensional vectors (i.e., embeddings) to facilitate further
processing, which is one of the most common and critical steps
in many NLP tasks. We regard instructions as words in NLP-
inspired binary code analysis, and aim to represent instructions
as embeddings as well.

To facilitate cross-architecture binary code analysis, our goal
is that similar instructions, regardless of their architectures, have
embeddings close to each other. To this end, we propose a joint
learning approach to generating instruction embeddings that cap-
ture not only the semantics of instructions within an architecture,
but also their semantic relationships across architectures. To the
best of our knowledge, this is the first work on building cross-
architecture instruction embedding model. As a showcase, we ap-
ply the model to resolving one of the most fundamental problems
for binary code similarity comparison—semantics-based basic
block comparison, and the solution outperforms the code statistics
based approach. It demonstrates that it is promising to apply the
model to other cross-architecture binary code analysis tasks.

I. INTRODUCTION

When the source code of programs is not available, binary
code analysis becomes indispensable for a variety of important
tasks, such as plagiarism detection [41], [31], [68], malware
classification [70], [30], and vulnerability discovery [54], [63],
[69], [67], [44]. Increasingly, software is cross-compiled for
various architectures. For example, hardware vendors often use
the same code base to compile firmware for different devices
that operate on varying architectures (e.g., x86 and ARM):
this could cause a single vulnerability at source-code level to
spread across binaries across diverse devices. As a result, cross-
architecture binary code analysis has become an emerging
problem that draws great attention [54], [19], [21], [63], [71].
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Analysis of binaries across instruction set architectures (ISAs),
however, is non-trivial: binaries of varying ISAs differ greatly
in instruction sets; calling conventions; general- and special-
purpose CPU register usages; and memory addressing modes.

A binary, after being disassembled, is expressed in an
assembly language. Given this insight, binary code analysis can
be approached by borrowing ideas and techniques of Natural
Language Processing (NLP)—a rich area focused on processing
texts from various natural languages [9]. In many NLP tasks,
words are first often converted into word embeddings (i.e.,
high-dimensional vectors) to facilitate further processing [61],
[57]. A word’s embedding is able to capture the contextual
semantic meaning of the word; thus, words that have similar
contexts have embeddings that appear close together in the
high-dimensional space [47].

We regard instructions as words in NLP-inspired binary
code analysis, and thus aim to represent instructions as
embeddings as well. To facilitate cross-architecture binary
code analysis, our goal is that similar instructions, regardless
of their architectures, have embeddings that are close in
the high dimensional space. Specifically, we aim to learn
semantic features for each instruction, such that instructions
in one architecture with similar semantics are assigned similar
vector representations (the mono-architecture objective); and
additionally, instructions across different architectures with
similar semantics have similar vector representations (the cross-
architecture objective). We call such vector representations
cross-architecture instruction embeddings.

Why Cross-Architecture Instruction Embeddings? The cross-
architecture instruction embeddings capture semantic rela-
tions of instructions across architectures, and keep invariant
among tasks. Thus, it has many potential applications to
cross-architecture binary code analysis. Take the search of
semantically equivalent functions as an example. Given a
function in x86 that contains, for instance, the Heartbleed
function, by searching for functions similar to it from a
large database of functions of varying architectures, more
vulnerability instances may be found. This question has gained
intense research interest [54], [19], [21], [63]. A core subtask
involved is the comparison of basic blocks across architectures.
We will show how the proposed technique can be applied to
resolving this subtask.

Moreover, many deep learning based NLP techniques take
word embedding as inputs. Following the idea of NLP-inspired



binary code analysis, the proposed instruction embedding model
can be applied to, e.g., classifying binaries across architectures
by feeding the instruction embeddings of the binaries into
classic neural network structures that are used for classifying
texts in NLP [37], [65], [59].

Our Approach. We propose to learn the cross-architecture
instruction embedding through a joint learning approach. Specif-
ically, our joint model utilizes both the context concurrence
information present in the instruction sequences from the same
architecture, and the semantically-equivalent signals exhibited
in the instruction sequence pairs from different architectures. By
jointly learning these two types of information, our model can
achieve both the mono-architecture and cross-architecture ob-
jectives, and generate high-quality cross-architecture instruction
embeddings that capture not only the semantics of instructions
within an architecture, but also their semantic relationships
across architectures.

We have implemented the novel cross-architecture instruc-
tion embedding model, and conducted a series of experiments
to evaluate the quality of the learned instruction embeddings.
Moreover, as a showcase, we apply the model to resolving one
of the most fundamental problems for binary code similarity
comparison, that is, semantics-based basic block similarity
comparison. Our solution achieves AUC = 0.90. Recent
work [19], [21], [63] uses several manually selected statistic
features (such as the number of instructions and the number
of constants) of a basic block to represent it. However, a SVM
classifier based on such features only achieves AUC = 0.85
for the same task. The trained models, datasets, and evaluation
results are publicly available.!

We summarize our contributions as follows:

e To the best of our knowledge, this is the first work
on building a uniform cross-architecture instruction
embedding model that tolerates the significant syntactic
differences across architectures.

e We propose an effective joint learning approach to
training the model, which makes use of both the
information in the instruction sequences from the
same architecture, and the semantically-equivalent
signals exhibited in the instruction sequence pairs from
different architectures.

e  We implement model, and the evaluation demonstrates
the good quality of the learned instruction embeddings.
Moreover, we apply the model to cross-architecture
basic block similarity comparison and the solution
outperforms the statistic feature based approach.

e This research successfully demonstrates that it is
promising to adapt NLP ideas and techniques to binary
code analysis tasks. Just like word embeddings are
critical for many NLP tasks, the proposed instruction
embedding model can substantially facilitate NLP-
inspired cross-architecture binary code analysis.

II. RELATED WORK

We expect the proposed model can be naturally applied
to binary code similarity comparison. Existing binary code

Uhttps://github.com/nlp-code-analysis/cross-arch-instr-model

analysis techniques for code similarity comparison can be
roughly divided into two classes: traditional approaches and
machine learning-based ones.

Traditional approaches. Most traditional approaches work
on a single architecture. First, static plagiarism detection or
clone detection approaches, includes string-based [2], [5], [15],
AST-based [32], [58], [64], [36], token-based [33], [56], [55],
and PDG-based approaches [22], [40], [11], [39]. Source code-
based approaches are inapplicable for closed-source software.
Symbolic execution of binary code has been enabled by tools
such as BitBlaze [6] and BAP [3]; it is accurate in extracting
code semantics [42], but is very computationally expensive and
unscalable to a large codebase.

Recent works have applied traditional approaches to address-
ing the cross-architecture scenario [54], [19], [8], [20], [13],
[14], [12]. Multi-MH and Multi-k-MH [54] are the first two
methods for comparing functions of different ISAs. But their
fuzzing-based basic-block similarity comparison and graph
(i.e., CFG) matching-based algorithms are very expensive.
discovRE [19] boosts CFG-based matching process, but is
still expensive. Both Esh [12] and its successor [13] use data-
flow slices of basic blocks as the basic comparable unit. Esh
uses SMT solver to verify function similarity, which makes
it unscalable. In [13], binaries are lifted to IR for creating
function-centric signatures.

Machine learning based approaches. Machine learning, in-
cluding deep learning, has been applied to code analysis [10],
(38], [21], [63], [51], [43], [52], [29], [60], [28], [S3], [27],
[17]. Lee et al. propose Instruction2vec for converting
assembly instructions to vector representations [38]; but their
instruction embedding model can only work on a single
architecture. Asm2Vec [17] produces a numeric vector for
each function, but can only work on a single architecture. We
instead build a cross-architecture instruction embedding model
which works for varying architectures.

A few works target cross-architecture binary code analy-
sis [21], [63], [8], [71]. Some exploit the statistical aspects of
code, rather than its semantics. For example, Genius [21] and
Gemini [63] use some manually selected statistical features (e.g.,
the number of constants) to represent basic blocks, but they
ignore the meaning of instructions and the dependency between
them, resulting in significant loss of semantic information.
INNEREYE-BB [71] uses LSTM to encode each basic block
into an embedding, but it needs to train a separate instruction
embedding model for each architecture. Instead, we build a
uniform cross-architecture instruction embedding model that
tolerates the syntactic differences across architectures.

Summary. To the best of our knowledge, ours is the first work
to learn cross-architecture instruction embeddings that capture
semantic features invariant to specific tasks. Such instruction
embeddings can be adopted to a variety of important code
analysis tasks, and help us scale to more architectures.

III. BACKGROUND

A. Word Embeddings

Many NLP models applying deep learning techniques have
been proposed to learn high-quality word embeddings, with
Mikolov’s skip-gram (SG) and Continuous Bag Of Words



(CBOW) [47] gaining a lot of traction due to their relatively
low memory use, and overall increased efficiency.

The SG model takes each word as the input and predicts
the context corresponding to the word, while the CBOW model
takes the context of each word as the input and predicts the
word corresponding to the context. During training, a sliding
window is applied on a text. Each model starts with a random
vector for each word, and then gets trained when going over
each sliding window. After the model is trained, the embeddings
of each word become meaningful, yielding similar vectors for
similar words. Due to their simplicity, both models can achieve
very good performances on various semantic tasks, and can be
trained on a desktop computer at billions of words per hour.

B. Multilingual Word Embeddings

A wide variety of multilingual NLP tasks, including machine
translation [7], entity clustering [26], and multilingual document
classification [4], have motivated recent work in training
multilingual word representations where similar-meaning words
in different human languages are embedded close together in
the same high-dimensional space.

Different approaches have been proposed to training mul-
tilingual word embeddings. For example, one category of
approaches is based on multilingual mapping, where word
embeddings are first trained on each language independently
and a mapping is then learned to transform word embeddings
from one language to another [48]. Another category attempts
to jointly learn multilingual word embeddings from scratch [34],
[35], [25], [45]. Our cross-architecture instruction embedding
model adapts the technique proposed in [45].

IV. CROSS-ARCHITECTURE INSTRUCTION
EMBEDDING MODEL

In light of the idea of NLP-inspired binary code analysis,
we regard instructions as words. An instruction includes an
opcode (specifying the instruction operation) and zero or more
operands (specifying registers, memory locations, or literal
data). For example, mov ebp, esp is an instruction where
mov is an opcode and both ebp and esp are operands. Note
that the assembly code in this paper adopts the Intel syntax.

A. Design Goal

Our goal in building the instructions model is to achieve
both the mono-architecture and cross-architecture objectives.
That is, we want the learned cross-architecture instruction
embeddings not only to preserve the clustering properties mono-
architecturally (instructions in one architecture with similar
semantics are close together in the vector space), but also
exhibit the semantic relationships across different architectures
(instructions across architectures with similar semantics are
close together).

B. System Overview

Our proposed cross-architecture instruction embedding
model adapts the joint learning approach in [45], consisting
of a mono-architecture component and a multi-architecture
component. The mono-architecture component utilizes the
context concurrence information present in the input instruction

sequences from the same architecture (Section IV-C); and the
multi-architecture component learns the semantically-equivalent
signals exhibited in the equivalent instruction sequence pairs
from varying architectures (Section IV-D).

An instruction sequence in our work is a basic block, as we
regard instructions as words and basic blocks as sentences. Note
that we do not consider a function as a sentence, as a function
cannot be treated as a straight-line sequence: when a function
is invoked, its instructions are not executed sequentially.

Handling out-of-vocabulary (OOV) instructions. The issue
of OOV words is a well-known problem in NLP, and it
exacerbates significantly in our case as constants, address
offsets, labels, and strings are frequently used in instructions.
To address it, instructions are preprocessed using the following
rules: (1) Numerical constant values are replaced with 0, and
the minus signs are preserved. (2) String literals are replaced
with <STR>. (3) Function names are replaced with F0O. (4)
Other symbol constants are replaced with <TAG>.

Joint objective function. Below is our joint objective function:

N N-1 N
J= 'VZJ(Monoai) +4 Z Z J(Multicg;a;>) (1)
i=1 i=1 j=it1

In this equation, each mono-architecture component,
Mono,, (Vi € {1,...N}) aims to capture the clustering property
of the corresponding architecture a;, where J(Mono,,) is
the objective function of Mono,,. Each multi-architecture
component, Multig, ;> (Vi,j € {1,..N}, i # j), is used
to learn the semantic relationships across architectures, where
J(Multic,, q;>) is the objective function of Multi.g, a;>-
The ~ and S hyperparameters balance out the influence of the
mono-architecture components over the multi-architecture one.

Specifically, if there are only two architectures, e.g., x86
and ARM, the joint objective function becomes:

J = 'y(J(Monoxg@)+J(MonoARM))+BJ(Multi<x867ARM>)
(2)

C. Mono-Architecture Component

Any word embedding model can be a candidate to be
selected to build the mono-architecture component [47], [34],
[25], [49], [50], [16]. Based on our experiment, we adopt
the CBOW model as implemented in word2vec [47], which
achieves better performance than the skip-gram model.

The CBOW model predicts a current instruction based
on its context. During training, a sliding window with size
n is employed on an instruction sequence. The context of a
current instruction e; is defined as n instructions before and
after e; within the corresponding sliding window. The CBOW
model contains three layers. The input layer corresponds to the
context. The hidden layer corresponds to the projection of each
instruction from the input layer into the weight matrix, which
is then projected into the third output layer. The final step is
the comparison between the output and the current instruction
in order to correct its vector representation based on the back



moveq [rip+<tag>],rax je ;tag>

tesfq rax,rax

callq féo

str r0,[r7] cmp r0,0 beq <tag>

Fig. 1: A cross-architecture instruction embedding model.

propagation of the error gradient. Thus, the objective of the
CBOW model is to maximize the following equation:

T

1
J = T; 1og P(etlet—n,--€t—1,€t415 e Ct4n)  (3)

where T' is the sequence length, and n the sliding window size.

After the model is trained, similar instructions tend to have
embeddings close together in the high-dimensional vector space.

D. Multi-Architecture Component

We adopt the CBOW model to build our multi-architecture
component. Our cross-architecture instruction embedding model
is extended from the CBOW model as implemented in
word2vec, and is effective in learning instruction representa-
tions both mono-architecturally and multi-architecturally.

Figure 1 shows how our cross-architecture instruction
embedding model works. The input is a pair of semantically-
equivalent basic blocks, each of which is a sequence of instruc-
tions: the instruction sequence of the basic block compiled for
x861is {callg foo;moveq [rip+<tag>],rax;testq
rax,rax; je <tag>}, and the instruction sequence of the
block compiled for ARM is {bl foo; str r0, [r7]; cmp
r0, 0; beg <tag>}. Note that the instruction sequences may
be of different lengths, and the lengths can vary from example
to example; both can be easily handled by the model.

To predict instructions cross-architecturally rather than
only mono-architecturally as in the standard CBOW model
(Section IV-C), we use the contexts in one architecture to
predict the instructions in another architecture. For example, if
we know that the instruction moveq [rip+<tag>],rax in
x86 has the same meaning as the instruction str r0, [r7]
in ARM, we can simply substitute str r0, [r7] and use the
surrounding instructions—such as b1 foo and cmp r0, 0—
to predict moveqg [rip+<tag>], rax. Therefore, given an
alignment link between an instruction e; in one architecture and
an instruction es in another architecture, our cross-architecture
model uses the neighbors of the instruction es to predict
the instruction e, and vice versa. Then, J(Multicg, q;>)
in Equation 1, where a; and a; represent two different
architectures, is also the objective function in Equation 3.

The challenge here is how to find the alignment links
between instructions. There are two solutions. (1) A simple
way is to assume linear alignments between instructions across
architectures. That is, each instruction in one sequence M at
position ¢ is aligned to the instruction in another sequence
N at position i x |N|/|M|, where |M| and |N| are the

length of the corresponding sequences. (2) Another way is to
determine the alignment links based on the opcode contained
in each instruction. For example, from the opcode references
of x86 [62] and ARM [1], we can find that moveq from x86
and str from ARM can be used to store data in registers;
thus, it is reasonable to align an instruction containing moveq
with another instruction containing str. Then, a dynamic
programming algorithm similar to the solution to finding the
Longest Common Subsequence can be used to determine the
best alignment between two sequences.

We adopt the first solution in our current implementation.
Our preliminary results show that the model has good per-
formance. We plan to explore the second solution to further
improve the model as future work.

V. EVALUATION

This section presents our evaluation results. We first describe
the dataset used in our evaluation (Section V-A) and discuss how
the model is trained (Section V-B). We then conduct three dif-
ferent tasks to evaluate the quality of the learned model: (1) the
mono-architecture instruction similarity task (Section V-C); (2)
the cross-architecture instruction similarity task (Section V-D);
and (3) as a concrete application, the cross-architecture basic-
block similarity comparison task (Section V-E).

A. Dataset

We train our model using basic blocks that are open-sourced
by our prior work? [71], consisting of 202,252 semantically sim-
ilar basic-block pairs. This dataset is prepared using OpenSSL
(vl.1.1-prel) and four popular Linux packages, including
coreutils (v8.29), findutils (v4.6.0), diffutils
(v3.6), and binutils (v2.30). Each program is compiled
by two architectures (x86-64 and ARM) and clang (v6.0.0)
with three different compiler optimization levels (O1-03).

Two basic blocks of different ISAs compiled from the
same piece of source code are considered as equivalent. To
collect such ground truth, we modify the backends of various
architectures in the LLVM compiler to add the basic-block
boundary annotator, which annotates a unique ID for each
block so that all blocks compiled from the same piece of source
code, regardless of architecture, will obtain the same ID.

B. Model Training

We use the following settings to train our cross-architecture
instruction model®: the instruction embedding dimension of
200, the sliding window size of 5, a subsampling rate of 1e-5,
negative sampling with 30 samples, and the learning rate of
0.05. The model is trained for 10 epochs and the learning rate is
decayed to 0 once training is done. We set the hyperparameters
in Equation 1 to 1 for v and 4 for 5.

C. Mono-Architecture Instruction Similarity Task

Instruction Similarity Test. Unlike the case of word embed-
ding models—which have many existing word-aligned corpora
to evaluate the quality of word embeddings—we do not have

Zhttps://nmt4binaries.github.io
3See [47] for more details on the parameters.
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instruction similarity test.

instruction similarity test.

basic-block similarity comparison test.

TABLE I: Nearest neighbor instructions mono-architecturally. It shows the top two similar ARM instructions for four randomly

selected ARM instructions as measured by cosine similarity.

ADD rl,r0,r7 SUB sp, sp, 0 LDR r0, [r5+0] MOV r0,r5

ARM Sim. score ARM Sim. score ARM Sim. score ARM Sim. score
ADD rl,r0,r5 0.643148 ADD r4,sp,0 0.339248 | LDR r4, [r2+0] 0.441962 | ILDR r2, [sp+0] 0.590213
ADD rl,r0,r6 | 0.630020 | STR r4, [r0],0 | 0.339097 | STR r7, [sp+0] 0.392250 LDR r3,<tag> 0.528087

TABLE II: Nearest neighbor instructions cross-architecturally. It shows the top two similar x86 instructions for six randomly

selected ARM instructions as measured by cosine similarity.

LDR r0, [r5+0] LDRNE r4, [sp+0] ADD rl,r0,r7
x86 Sim. score x86 Sim. score x86 Sim. score
MOVL [rbp],eax 0.437663 CMOVLEL rl4d,eax | 0.584823 | MOVQ [rax+0],rl3 0.538247
MOVL [rl14+0],eax | 0.432104 CMOVEQ rl2,r9 0.584176 ADDQ rl3, rbx 0.502640
BLT <tag> BEQ <tag> MOV r8,r2
x86 Sim. score x86 Sim. score x86 Sim. score
JL <tag> 0.524643 JE <tag> 0.372829 MOVQ rl3, rdi 0.453570
JLE <tag> 0.453281 CMPB [rsi+0],0 0.367084 MOVQ r8, rbp 0.413255

such data. We thus create a set of manually-labeled instruc-
tion pairs from the same architecture to test the instruction
embeddings. We consider a pair of instructions to be similar if
they contain the same opcode, and a pair of instructions with
different opcodes to be dissimilar; but a few exceptions exist—
for example, in x86, cmp and test are different opcodes
but are semantically similar, and thus instructions containing
them tend to have similar embeddings. We randomly select
50 similar instruction pairs and 50 dissimilar ones, which are
assigned with labels 1 and -1, respectively.

We then measure the similarity of two instructions based
on their cosine similarity. Figure 2 shows the ROC curves and
AUC values for ARM and x86: the AUC for ARM and x86
are around 0.828 and 0.749, respectively. It is worth noting
that the accuracy of the monolingual word similarity test for
the multilingual word embedding models are around 0.51 [18].

Nearest Neighbor Instructions. We then randomly select four
ARM instructions, and search for the top two similar ARM

instructions using cosine similarity. The result is shown in
Table I. We omit the result for x86 due to space limits. It
can be observed that the learned cross-architecture instruc-
tion embeddings still preserve the clustering property mono-
architecturally. For example, our embeddings find very relevant
neighbor instructions for the instruction ADD r1, r0, r7, such
as ADD rl,r0,r5 and ADD rl,rO, ré6.

D. Cross-Architecture Instruction Similarity Task

Instruction Similarity Test. Similar to the previous experi-
ment, we create a set of manually-labeled cross-architecture
instruction pairs. We first determine the similar and dissimilar
opcode pairs for different ISAs based on our prior knowledge
and experience, and then select a set of similar and dissimilar
instruction pairs based on whether their contained opcodes
are (dis)similar or not. We then measure the similarity of two
instructions using cosine similarity. Figure 3 shows the ROC
result. Our model achieves AUC = 0.723 on this test.



Fig. 5: Visualization of all the instructions for x86 and ARM
in the same vector space.

Nearest Neighbor Instructions. We next randomly select six
ARM instructions, and search for the top two similar x86
instructions for each ARM instruction based on their cosine
similarity. The result is shown in Table II. We can see that
similar instructions of different ISAs have embeddings close
to each other, as predicted. For example, our embeddings
find very relevant neighbor x86 instructions for the ARM
instruction LDR r0, [r5+0], such as MOVL [rbp], eax
and MOVL [r14+0],eax; both LDR from ARM and MOV
from x86 can be used to load register from memory. Thus, the
cross-architecture instruction embeddings successfully capture
semantics of instructions across architectures.

Cross-Architecture Instruction Embedding Visualization.
We next use t-SNE [46], a useful tool for visualizing high-
dimensional vectors, to plot all the cross-architecture instruction
embeddings in a two-dimensional space, as shown in Figure 5.
A quick inspection shows that the instructions of different
ISAs overlap together. Our prior work [71] learns the mono-
architecture instruction embeddings, where the instruction
embeddings are architecture-specific (i.e., separate instruction
embedding models need to be trained for each architecture),
and the embeddings of different ISAs exist in different vector
spaces (see Figure 9 in [71]). Instead, this work establishes a
cross-architecture instruction embedding model, which learns
embeddings in the same vector space.

We then visualize the embeddings of a set of similar
instruction pairs. To this end, we randomly pick five x86
instructions; and for each x86 instruction, we select its similar
counterpart from ARM based on our prior knowledge. We use
t-SNE to plot their embeddings, as shown in Figure 6. It can
be observed that most x86 and ARM instructions with similar
meanings appear nearby: for example, the two similar x86
and ARM instructions, SUBQ RSP, 0 and SUB SP, SP, O,
are close together in the vector space.

Therefore, our cross-architecture instruction embeddings
capture not only instruction semantics, but also semantic
relationships across different architectures.

E. Cross-Architecture Basic-Block Similarity Comparison Task

We next conduct the cross-architecture basic-block similarity
comparison task to evaluate the quality of the learned model. We

SUBQ~RSP,
q%UB~SP,SP,O

RDI,[R12+0] —
~ 0] ~R1.RO,R7
ADD(?ZDRRH',)‘QB&MD] TEMP~R3.0

MVYN~-RO,C

MOVL~EAX,-0

Fig. 6: Visualization of five ARM and x86 instruction pairs.
A blue circle and red triangle represent an ARM and x86
instruction, respectively.

divide the dataset which contains 202,252 similar basic-block
pairs into two parts: 90% of them are used for training; 10% of
them and another 20,633 dissimilar block pairs (selected from
the dataset open-sourced by our prior work [71]) for testing.
Note that we only need similar block pairs for training; and
for testing both similar and dissimilar pairs are used.

To measure the similarity of two basic blocks, we first
compose all the instruction embeddings for each basic block,
and then use the cosine similarity of the two composed
embeddings to measure the basic block similarity. For simplicity,
we use the sum of all the instruction embeddings of a basic
block to represent it. This simple summation has proven to be a
successful way of obtaining sentence or document embeddings
that can be used as features in specific tasks [66], [24] such as
answer sentence selection [66].

Figure 4 shows the ROC curve evaluated on the testing
dataset; and our model achieves AUC = 0.90. Recent work [19],
[21], [63] looks at the statistical information of a basic block,
and uses several manually selected features (such as the number
of instructions and constants) of a basic block to represent it.
But such an approach causes significant loss of information
about the instructions being used and their dependencies. As
a result, the statistics-based representation is efficient but
inaccurate—a SVM classifier based on such features can only
achieve AUC = 0.85 according to our prior work [71].

Therefore, our model, capturing the meaning of instructions
and the dependency between them, can provide more precise
basic-block representation and efficient comparison. It is worth
mentioning that many prior systems [23], [41], [54], [21], [63]
built on basic-block comparison can benefit from our model.

VI. FUTURE WORK

Improvements. Currently, heuristics are used to decide parame-
ter values; e.g., the window size is set as 20. We will investigate
the stability of the cross-architecture instruction embedding
model with respect to different hyperparameters—including the
sliding window size, the number of epochs, and the instruction
embedding dimension.

Two solutions are proposed in Section IV-D to find the
alignment links between instructions. We have tried the first



simple solution, and plan to explore the second one to attest
how important alignment information is in learning cross-
architecture instruction embeddings.

The sliding window based on program paths can reflect
the context information of instructions more precisely and may
generate better instruction embeddings. We plan to explore
dynamic analysis to generate a set of semantically-equivalent
paths from two programs compiled for different architectures,
and use them for training. We will evaluate the model trained
on paths in terms of accuracy and efficiency.

Applications. A prominent application of cross-architecture in-
struction embeddings (similar to multilingual word embeddings)
is that the induced instruction embeddings enable us to transfer
a classifier trained on one architecture to another without
any adaptation. We plan to investigate the transferability by
applying our model to the cross-architecture program/function
classification problem. For example, we will train a classifier
using the code compiled for x86, and check whether it can
directly work on ARM.

Moreover, we plan to apply our model to other important
code analysis tasks, such as cross-architecture bug search, and
compare our model to recent approaches [21], [63], [71], [14].

VIL

To the best of our knowledge, this is the first work
that aims to learn cross-architecture instruction embeddings
that tolerate the syntactic differences of instructions across
architectures and capture their important semantic features. We
adopt a joint learning approach to building the model, such
that instructions with similar semantics, regardless of their
architectures, have embeddings close together in the vector
space. Our instruction similarity tests and cross-architecture
basic-block similarity comparison task demonstrate the good
quality of the learned instruction embeddings. This model may
be applied to many cross-architecture binary code analysis
tasks, such as vulnerability finding, malware detection, and
plagiarism detection.

CONCLUSION
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