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Abstract—Differential privacy (DP) is a widely accepted
mathematical framework for protecting data privacy. Simply
stated, it guarantees that the distribution of query results
changes only slightly due to the modification of any one tuple
in the database. This allows protection, even against powerful
adversaries, who know the entire database except one tuple. For
providing this guarantee, differential privacy mechanisms assume
independence of tuples in the database – a vulnerable assumption
that can lead to degradation in expected privacy levels especially
when applied to real-world datasets that manifest natural depen-
dence owing to various social, behavioral, and genetic relation-
ships between users. In this paper, we make several contributions
that not only demonstrate the feasibility of exploiting the above
vulnerability but also provide steps towards mitigating it. First,
we present an inference attack, using real datasets, where an
adversary leverages the probabilistic dependence between tuples
to extract users’ sensitive information from differentially private
query results (violating the DP guarantees). Second, we introduce
the notion of dependent differential privacy (DDP) that accounts
for the dependence that exists between tuples and propose a
dependent perturbation mechanism (DPM) to achieve the privacy
guarantees in DDP. Finally, using a combination of theoretical
analysis and extensive experiments involving different classes of
queries (e.g., machine learning queries, graph queries) issued over
multiple large-scale real-world datasets, we show that our DPM
consistently outperforms state-of-the-art approaches in managing
the privacy-utility tradeoffs for dependent data.

I. INTRODUCTION

Information sharing is key to realizing the vision of
a data-driven customization of our environment. Data that
were earlier locked up in private repositories are now being
increasingly shared for enabling new context-aware applica-
tions, better monitoring of population statistics, and facilitating
academic research in diverse fields. However, sharing personal
data gives rise to serious privacy concerns as the data can
contain sensitive information that a user might want to keep
private. Thus, while on one hand, it is imperative to release
utility-providing information, on the other hand, the privacy of
users whose data is being shared also needs to be protected. To-
wards this end, the notion of Differential Privacy (DP), which

provides a rigorous mathematical foundation for defining and
preserving privacy, has received considerable attention [12]–
[16]. Used for protecting the privacy of aggregate query results
over statistical databases, DP guarantees that the distribution
of query outputs changes only slightly with the modification
of a single tuple in the database. Thus, the information that
an adversary can infer through observing the query output is
strictly bounded by a function of the privacy budget.

To provide its guarantees, DP mechanisms assume that the
data tuples (or records) in the database, each from a different
user, are all independent. This is a weak assumption, especially
because tuple dependence occurs naturally in datasets due
to social, behavioral and genetic interactions between users.
For example, in a social network graph (with nodes repre-
senting users, and edges representing ‘friendship’ relations),
the ‘friendship’ between two nodes, not explicitly connected
in the graph, can be inferred from the existence of edges
between other nodes [28]. Private attributes in a user’s record
can be inferred by exploiting the public attributes of other
users sharing similar interests [6]. A user’s susceptibility to
a contagious disease can be easily inferred by an adversary
who has access to noisy query results and is aware of the
fact that the user’s immediate family members are part of the
database being queried [24]. Social and behavioral dependence
have also been used to perform de-anonymization attacks on
released datasets [22], [32], [33], [37].

The fact that dependence (or correlation) among tuples
can degrade the expected privacy guarantees of DP mecha-
nisms was first observed by Kifer et al. [24], and later in
[8], [21], [25], [40]. Based on our own experiments with real-
world datasets in Section IV, we attribute this degradation to
a faster exhaustion of the privacy budget in DP. In prior work,
the Pufferfish framework [25], proposed as a generalization
of DP, incorporated adversarial belief about existing data
relationships using a data generation model maintained as a
distribution over all possible database instances. However, the
framework did not propose any specific perturbation algorithm
to handle the dependence. The Blowfish framework [21],
which is a subclass of the Pufferfish framework, allowed
users to specify adversarial knowledge about the database
in the form of deterministic policy constraints and provided
perturbation mechanisms to handle these constraints. Finally,
to handle correlation in network data using DP, the authors
in [8] multiplied the sensitivity of the query output with
the number of correlated records. This technique resulted in
excessive noise being added to the output severely degrading
the utility of the shared data, which serves as the baseline
approach in our experiments.
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In this paper, we formalize the notion of dependent
differential privacy (DDP) to handle probabilistic dependence
constraints between tuples while providing rigorous privacy
guarantees. We further develop an effective dependent pertur-
bation mechanism (DPM) to achieve the privacy guarantees in
DDP. Our mechanism uses a carefully computed dependence
coefficient that quantifies the probabilistic dependence between
tuples in a fine-grained manner. We interpret this coefficient as
the ratio of dependent indistinguishability of a tuple which is
the maximum change in a query output due to the modification
of another dependent tuple and self indistinguishability which
is the maximum change in a query output due to modification
of the tuple itself. In summary, our paper makes the following
contributions:

• Inference Attack: Using real-world datasets we
demonstrate the feasibility of an inference attack on
differentially private query results by utilizing the
dependence between tuples. We show that an adversary
can infer sensitive location information about a user
from private query outputs by exploiting her social
relationships. Furthermore, this adversary, even with
partial knowledge of both the user’s social network and
the tuple database, can extract more sensitive location
information than the adversary in DP (that knows all the
tuples in the database except one but is unaware of their
dependence relationships), thus violating the DP guarantees.

• Dependent Differential Privacy: We formalize the notion
of DDP, to defend against adversaries who have prior
information about the probabilistic dependence between
tuples in a statistical database. We then show that it is
possible to achieve the DDP guarantees by augmenting
the Laplace mechanism, used for achieving the DP
guarantees, with a dependence coefficient. The coefficient
allows accurate computation of the query sensitivity for
dependent data, thus minimizing the noise that needs to
be added providing better utility at the same privacy level.
Furthermore, we prove that our dependent perturbation
mechanism is also resilient to composition attacks [11], [18].

• Evaluation: Our proposed dependent perturbation mecha-
nism applies to any class of query functions. Using extensive
evaluation involving different query functions (e.g., machine
learning queries such as clustering and classification, and
graph queries such as degree distribution) over multiple
large-scale real-world datasets we illustrate that our DPM
outperforms state-of-the-art approaches in providing rigor-
ous privacy and utility guarantees for dependent tuples.

II. PRELIMINARIES

In this section, we introduce terms used in formalizing
the notion of differential privacy.

A. Differential Privacy

Differential privacy is a rigorous mathematical framework
aimed at protecting the privacy of users’ sensitive information
in a statistical database [12]–[16]. The threat to privacy arises
from the release of aggregate query results computed over
the statistical database. The goal of DP is to randomize
the query results to ensure that the risk to a users’ privacy

does not increase substantially (bounded by a function of
the privacy budget ε) as a result of participating in the
statistical database. We represent a statistical database using a
vector D = [D1, D2, · · · , Dn] drawn from domain D, where
Di ∈ Rm denotes the data of the ith user. The notion of
ε-differential privacy is formally defined as:

Definition 1. (ε-differential privacy) [12] A randomized algo-
rithm A provides ε-differential privacy if for any two databases
D,D′ that differ in only a single entry, and for any output S,

max
D,D′

P (A(D) = S)

P (A(D′) = S)
≤ exp(ε) (1)

where A(D) (resp. A(D′)) is the output of A on input D
(resp. D′) and ε is the privacy budget. Smaller value of the
privacy budget ε corresponds to a higher privacy level.

B. Achieving Differential Privacy

The Laplace Perturbation Mechanism (LPM), proposed
in [12], achieves ε-differential privacy. The key idea is to use
noise drawn from a suitable Laplace distribution to perturb the
query results before their release. Let Lap(σ) denote a zero
mean Laplace distribution with scaling factor σ. The corre-
sponding density function is given by f(x) = 1

2σ exp
(
− |x|σ

)
.

For a query output of dimension q, LPM uses a noise vector
Lapq(σ) where each dimension of the vector is drawn inde-
pendently from the distribution Lap(σ).

Integral to the design of the LPM is the global sensitivity
parameter ∆Q, computed for the issued query function Q, and
is defined as follows:

Definition 2. (Global sensitivity) [12] The global sensitivity
of a query function Q : D → Rq , issued on database D, is
the maximum difference between the outputs of the function
when one input changes (i.e., D and D′ differ in only a single
entry). Formally,

∆Q = max
D,D′

‖Q(D)−Q(D′)‖1 (2)

Theorem 1. ε-differential privacy is guaranteed if the scaling
factor σ in the Laplace distribution is calibrated according to
the global sensitivity ∆Q. For any query function Q over an
arbitrary domain D, the mechanism A

A(D) = Q(D) + Lap(∆Q/ε) (3)

achieves ε-differential privacy (see [12] for detailed proof).

III. ADVERSARIAL MODEL

The popularity of DP as a privacy definition (recall
Definition 1) stems from the fact that it makes no assumptions
about the background knowledge available to an adversary.
In other words, mechanisms such as LPM, that satisfy the DP
definition, guarantee that users’ sensitive data are protected re-
gardless of adversarial knowledge. However, the privacy guar-
antees provided by the existing DP mechanisms are valid only
under the assumption that the data tuples forming the database
are pairwise independent (which is also implicitly assumed by
the DP adversary model) [8], [21], [24], [25], [27], [40]. In
reality, this assumption is a cause of vulnerability as data from
different users can be dependent, where the dependence can
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Fig. 1. Dependence between tuples can seriously degrade the
privacy guarantees provided by the existing differential privacy
mechanisms.

be due to various social, behavioral and genetic interactions
that might exist between users. An active adversary can use
auxiliary information channels to access these dependence and
exploit the vulnerabilities in DP mechanisms as illustrated by
the simple example below.

Example 1: Consider a database D = [Di, Dj ] where
Di, Dj have a probabilistic dependence as Dj = 0.5Di+0.5X
and Di, X are independently and uniformly distributed within
[0, 1] as shown in Fig. 1. Below we consider a simple inference
attack in which an adversary issues a sum query Q(D) =
Di +Dj and uses the query result to infer the value of Di.

First, we consider a DP-adversary, one that assumes
independence between Di and Dj . Following the LPM mech-
anism, we add Laplace noise with parameter 1/ε 1 which
allows us to achieve ε−differential privacy guarantee, i.e.,

max
S

P (A([Di=0,Dj ])=S))
P (A([Di=1,Dj ])=S)) = max

S

exp(− |S−0−D2|
ε )

exp(− |S−1−D2|
ε )

≤ exp(ε).
Next, for the same inference attack, we consider a more

powerful adversary, one that not only has all the properties
of the DP-adversary but in addition also knows the depen-
dence relation between Di and Dj . Using the same LPM
mechanism with Laplace noise of parameter 1/ε for such an
adversary results in a much weaker privacy guarantee, i.e.,

max
S

P (A([Di=0,Dj ])=S))
P (A([Di=1,Dj ])=S)) = max

S

∫ 1
x=0

exp(− |S−0−0−0.5x|
ε )∫ 1

x=0
exp(− |S−1−0.5−0.5x|

ε )
≤

exp(1.5ε).
The above example exposes the following vulnerabilities

in DP: (1) The privacy Definition 1 does not account for the
dependence relations between the tuples in a database; (2)
Privacy mechanisms such as LPM rely on the independence of
the data tuples for providing privacy guarantees; and motivates
the DDP-adversary model which is formally defined below.

DDP-adversary

We assume a setting, in which a trusted data curator
maintains a statistical database D = [D1, D2, · · · , Dn] where
Di denotes the data from the ith user. In response to a query,
the curator computes a randomized query resultA(D), with the
goal of providing statistical information about the dataset while
preserving the privacy of individual users. Both the users and
the data curator are assumed to be honest. The data recipient,
issuing the query, is our DDP-adversary. We associate the
following properties to this adversary who wants to use the
noisy query result to infer data Di:

1The global sensitivity for Example 1 computed according to Definition 2
is 1 since they only consider neighboring database which differ in one entry.

• Access to D−i: Data of all the other n− 1 users (excluding
the ith user), denoted by D−i, is available to the adversary.
This property makes the DDP-adversary as powerful as a
DP-adversary.
• Access to joint distribution P (D1, . . . , Dn): The adversary

uses auxiliary channels (e.g., the Gowalla social network
in our attack in Section IV) to estimate the joint proba-
bility distribution P (D1, . . . , Dn), between the data tuples.
This property together with access to D−i makes a DDP-
adversary more powerful than a DP-adversary.

In the remaining paper, unless otherwise specified, the privacy
definitions and guarantees are all with respect to the DDP-
adversary. In Section IV, we perform a real-world inference
attack to demonstrate that a DDP-adversary can extract more
private information than guaranteed by DP. In Section V, we
develop a new privacy definition dependent differential privacy
(DDP) that allows for dependence between data tuples in the
database. In Section VI, we propose a privacy mechanism to
satisfy the DDP definition. We establish formal guarantees
for our privacy mechanism and illustrate its efficacy using
experiments on large-scale real-world datasets.

IV. INFERENCE ATTACK: DIFFERENTIAL PRIVACY UNDER
DEPENDENT TUPLES

Real-world datasets are complex networks that exhibit
strong dependence (correlations) and their release introduces
various privacy challenges. Adversaries can combine the re-
leased obfuscated data (generated by applying the privacy
mechanisms on the data), with knowledge of the existing
dependence relations to infer users’ sensitive information.
There exist limited prior work that have outlined realistic
inference attacks exposing the vulnerability of DP mechanisms
under dependent data tuples [24], [25]. In this section, we
demonstrate (1) a real-world inference attack on the LPM-
based differential privacy mechanism, as a realistic confirma-
tion of the feasibility of such attacks in practical scenarios; and
(2) the capability of a DDP-adversary to use released data,
satisfying DP definition, to build an inference attack which
violates the security guarantees of DP mechanisms. Before
outlining our real inference attack for DP we compare our
work with existing related work [17], [18], [24] to highlight
the importance of our attack.

• Ganta et al. in [18] explored how one can reason about
privacy in the presence of independent anonymized releases
of overlapping data. Compared with our inference attack,
they do not consider the dependence between data tuples in
their attack.
• Fredrikson et al. in [17] considered predicting a patient’s

genetic marker from the differentially private query results
by utilizing demographic information about that patient.
Thus, the auxiliary information used in this attack is ad-
ditional information about a patient (single tuple) and not
dependence between tuples.
• Kifer et al. in [24] investigated the inference about the

participation of an edge in a social network through observ-
ing the number of inter-community edges. The inference
performance varied with different network generation mod-
els. In contrast to the theoretical work of Kifer et al., we
demonstrate inference attacks using real data on complex
differentially private machine learning queries.
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TABLE I. Statistics of the Gowalla location dataset in our selected regions.

Mahattan,NY Brooklyn,NY Queens,NY San Jose,SF Oakland,SF Pasadena,LA Beverly Hill,LA Long Beach,LA
# of Users 997 507 811 1228 862 656 1083 825

# of Check-ins 11277 7116 9344 16347 12647 13114 19848 9109
# of Locations 1641 1680 2392 2066 2319 1803 4383 1486

Manhattan, NewYork

Queens, NewYork

Brooklyn, NewYork

San Jose, San Francisco

Pasadena, Los Angeles

Long Beach, Los Angeles

Beverly Hills, Los Angeles

Oakland, San Francisco

Fig. 2. Gowalla’s social dataset colored according to the results
from K-means clustering of the location dataset. We can see
that the location dataset is inherently correlated and the social
dataset well represents such relationships.

A. Dataset Description

Sharing of location information is often associated
with serious privacy threats [3], [35], [36]. Location data
(or mobility traces), can be easily linked with auxiliary
information sources (such as maps) to not only infer places
such as home and work location but also a user’s political
views, her medical conditions, etc.

We use the data collected from the location-based social
networking service Gowalla [9] for mounting our attack to
infer user’s location information. The locations correspond
to users’ check-ins at places. We obtained a subset of their
location dataset which had a total of 196, 591 users and
6, 442, 890 check-ins of these users over the period from
February 2009 to October 2010. Gowalla also maintains an
associated social network connecting its users. In fact, it is
this correlation that forms the basis of our inference attack.
The network data we obtained consisted of 950, 327 edges
connecting 196, 591 users. Considering the sparsity of the
location information, we decided to restrict our analysis to
users around three cities: New York, San Francisco and Los
Angeles. We selected these cities since they had the highest
number of active users. For our attack, we used data from
users who performed at least 10 check-ins at locations within
a 25km radius in any of the three cities. The resulting dataset
contains 6, 969 users, 98, 802 check-ins and 17, 770 locations
as shown in Table I. The corresponding selected social dataset
contains 47, 502 edges connecting these 6, 969 users.

Constructing the Location Pattern Dataset: For
each user i, we collect her check-ins in a set
C(i) = {ci0 , ci1 , ci2 , · · · , cimi}, where each check-in
cik=[User ID, timestamp,GPS coordinates,place identifier].
The GPS coordinates = [lat, lon] represents the latitude and
longitude of the location shared by the user. For the inference
attack, we only consider the GPS coordinates as effective
check-in records, and use them to extract a location pattern
vector for each user. To do so we compute the frequency
of visits to each location, and only keep the latitude and
longitude of those locations that correspond to the top-q
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Fig. 3. The distance between the location vectors of users.

frequencies. Formally, the location pattern vector for user i is
defined as:

di =
(
lati1 , loni1 , lati2 , loni2 , lati3 , loni3 , · · · , loniq

)
(4)

where (lati1 , loni1) is the coordinate of the most frequently
visited location of user i, (lati2 , loni2) and (lati3 , loni3) cor-
respond to the second and the third most frequently visited
location of user i, respectively. Without loss of generality, we
normalize each attribute in the location pattern dataset such
that its value lies within [0, 1].

B. Differentially Private Data Release

The GPS coordinates describing a user’s check-ins are
generally considered to be distinct, but in reality they are
typically clustered around a limited number of points. We
consider a scenario where the data provider uses the classical
K-means clustering approach [20] on the Gowalla location
dataset to compute cluster centroids, applies DP mechanism
on the centroids, and publishes the perturbed centroids to
other applications or researchers. The input to the K-means
algorithm are points d1 . . .dn in the 2q-dimensional unit cube
[0, 1]

2q . For our attack, we choose q = 6 while constructing
the location pattern in Eq. 4. To preserve the privacy of users’
sensitive data, the data provider perturbs the true centroids
µ = (µ1,µ2, · · · , µ̃k) by using the LPM mechanism, and
releases the perturbed centroids µ̃ = (µ̃1, µ̃2, · · · , µ̃k) 2 for
preserving the privacy of each individual’s location pattern.

Fig. 2 depicts the structure of the Gowalla social network
dataset which is colored according to the K-means clustering
results of the Gowalla location dataset (users belonging to the
same community are giving the same color). We can see that
users’ location patterns are inherently correlated, and the social
dataset embeds relationships contained in the location dataset.
Fig. 3 further shows the cumulative distribution function of the
location pattern distance between different user pairs, where
we compute the distance for di and dj as

2In this paper, we use ã to represent the perturbed version of a, and â to
represent the estimated value of a.
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Dist(di,dj) =
1

q

q∑
l=1

dist ((latil, lonil), (latjl, lonjl)) (5)

and dist ((latil, lonil), (latil, lonil)) represents the earth’s sur-
face distance between two coordinates3.

We find that the distance between the location patterns
for closer friends is smaller. These observations from Fig. 2
and Fig. 3 not only imply that the location patterns of users are
correlated with each other, but also that their social network
can serve as an important external information source for an
adversary to infer a user’s sensitive records.
C. Inference Algorithm

The adversary can observe the differentially private com-
munity centroids µ̃ = [µ̃1, µ̃2, · · · , µ̃k], has access to auxiliary
information D−i (recall DDP-adversary in Section III) and also
to the social relationships among the users. Let the adversary’s
estimated value of Di be D̂i. Using Bayes’ theorem, the
posterior probability of D̂i = d̂i computed by the DDP-
adversary can thus be written as

P (D̂i = d̂i|µ̃,D−i)

=
P (µ̃,D−i|D̂i = d̂i)P (D̂i = d̂i)

P (µ̃,D−i)

=
P (µ̃|D−i, D̂i = d̂i)P (D−i|D̂i = d̂i)P (D̂i = d̂i)

P (µ̃,D−i)

=
P (µ̃|D−i, D̂i = d̂i)P (D̂i = d̂i|D−i)

P (µ̃|D−i)
∼ exp {−|µ̃− µ̂|ε} · P (D̂i = d̂i|D−i) (6)

where exp {−|µ̃− µ̂|ε} in Eq. 6 represents the Laplace
noise induced by the estimated centroids µ̂. Such estimated
centroids are computed using the auxiliary D−i of other users
and each potential value D̂i = d̂i. P (D̂i = d̂i|D−i) represents
the prior information of Di inferred from the auxiliary infor-
mation D−i of other users. Note that our inference attack can
be mounted with any amount of auxiliary information. For an
adversary with partial auxiliary information, the corresponding
estimated centroids µ̂ and prior information P (D̂i = d̂i|D−i)
are computed based on these partial auxiliary information.

To estimate D̂i, an adversary can discretize the potential
region of Di and compute exp {−|µ̃− µ̂|ε}·P (D̂i = d̂i|D−i)
for each potential value d̂i. The adversary can then estimate
D̂i which corresponds to the maximal posterior probability for
all the potential values d̂i, i.e.,

D̂i = argmax
d̂i

exp {−|µ̃− µ̂|ε} · P (D̂i = d̂i|D−i) (7)

The key challenge is for the adversary to compute the
prior information P (D̂i = d̂i|D−i). We consider two different
types of adversaries: one which assumes that the tuples are in-
dependent and the other which utilizes the social relationships
between the users.

1) Attack 1 (Independent Tuple Assumption): First, we
consider an adversary who assumes the tuples within the
dataset are independent as in the standard differential privacy
model. To simplify our analysis without loss of generality,
we assume that Di is independent of {Dj}n−1

j=0,j 6=i (i.e.,
P (D̂i = d̂i|D−i) = P (D̂i = d̂i)) with identical distributions.

3http://www.movable-type.co.uk/scripts/latlong.html
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Fig. 4. Location vector inference attack. (a) represents Attack 1
under independent tuple assumption and (b) represents Attack
2 under dependent tuple assumption.

Therefore, the auxiliary information D−i can serve as sampling
values of Di, which can be utilized to estimate the prior
probability P (D̂i = d̂i).

Fig. 4 (a) shows the mechanism for inference attack under
the independent assumption. We discretize the estimated region
for D̂i where each grid corresponds to a potential value d̂i of
Di. The red squares (friends of user i) and the green triangles
(non-friends of user i) are location patterns of the other users
which also represent the sampling values of Di. Based on these
sampling values, we estimate the prior probability of D̂i = d̂i
by counting the number of values in D−i that fall into the grid
of d̂i as

Pinde(D̂i = d̂i|D−i) =
|dj : dj ∈ grid(d̂i)|∑̂

dk

|dj : dj ∈ grid(d̂k)|
(8)

2) Attack 2 (Dependent Tuple Assumption): Next, we
consider a sophisticated adversary who assumes that tuples in
the dataset are dependent on each other. Such an assumption
is practical since the mobility traces from close friends are
likely to be similar as shown in Fig.3. For an adversary who
has access to the social relationships of the users, he can draw
circles, shown in red, in Fig. 4(b), to represent the dependent
relationships among users, and all the girds (corresponding to
each potential value d̂i) within the red circles would be given
a higher weight. The prior probability for D̂i = d̂i would
thus be weighted based on the relationships of the users, and
the weighted prior probability under the dependent assumption
would become

Pde(D̂i = d̂i|D−i) =
weight(d̂i)|dj : dj ∈ grid(d̂i)|∑̂

dk

weight(d̂k)|dj : dj ∈ grid(d̂k)|

(9)
In Fig. 4(a), we can see that there are three sampling

values that belong to the grids corresponding to D̂i = d̂i(4)

and D̂i = d̂i(8). Therefore, we have Pinde(D̂i = d̂4|D−i) =

Pinde(D̂i = d̂8|D−i). However, in Fig. 4(b), the grid for D̂i =
d̂i(4) would have a much higher weight than the grid for D̂i =

d̂i(8). Therefore, we have Pde(D̂i = d̂i(4)|D−i) > Pde(D̂i =

d̂i(8)|D−i). As we know the location patterns of the user i’s
friends (shown as the red squares Fig. 4), it is more likely that
the location pattern Di of user i will be located closer to her
friends based on our observations in Fig. 3.
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Fig. 5. Performance ((a) the inference error and (b) the leaked information) for the inference attack.

D. Experimental Evaluation

We evaluate the performance for these two inference
attacks by measuring the following two metrics

Inference Error =
1

n

∑n

i=1
Dist(di, D̂i) (10)

Leaked Information =
1

n

∑n

i=1
H(Di)−H(Di|µ̃,D−i)

(11)
Dist(·) is defined in Eq. 5 and H(·) denotes the entropy
(information) of a random variable [10]. H(Di) evaluates
the adversary’s prior information for Di without utilizing the
social relationships and is the entropy of the prior probability
in Eq. 8, H(Di|µ̃,D−i) evaluates the adversary’s posterior
information after the inference attack and is the entropy of
the posterior probability in Eq. 6 (combined with Eq. 8 under
the independent assumption or combined with Eq. 9 under the
dependent assumption). By evaluating the Leaked Information,
we can measure the privacy breaches in terms of change in an
adversary’s a-priori to a-posteriori beliefs.

We set the number of communities K = 8 in the K-
means algorithm (shown in Fig. 2) and discretize each city
(NY, SF, LA) into 20 × 20 grids. The prior information for
the adversary before the inference attack can be computed
as H(Di) = 8.38 bits according to Eq. 8. From the results
in Fig. 5, we can see that the attacker can exploit the social
relationships between users to make better inferences (shown
by smaller inference errors in Fig. 5(a) and more information
leakage in Fig. 5(b)). Furthermore, in Fig. 5(b), larger ε (worse
privacy guarantee) results in smaller inference errors and more
information leakage, since the adversary has access to more
accurate centroids.

DDP-adversary with Partial Information: We also con-
sider a more realistic adversary that has access to partial
information of other users, e.g., Nprior = 3500 (roughly half
of all the other 6, 968 users) as in Fig. 5(b). By utilizing
social relationships, an adversary who only has access to partial
information of other users’ location data can still infer more
information than the DP adversary (recall Section III) who
has access to location information of all the other users but
ignores their dependence. Therefore, our advanced inference
attack is still effective even for realistic adversaries with partial
auxiliary information.

Violating DP Guarantees: We first prove that the max-
imum information leakage due to a DP-adversary, quantified
by the metric in Eq. 11, is bounded by ε. This is the upper

bound on the information leakage from a differentially private
query output due to a DP-adversary.

Theorem 2. The Leaked Information (in Eq. 11) for an
ε-differentially private mechanism is bounded by ε.

Detailed proof for Theorem 2 is deferred to the appendix.
As illustrated in Fig. 5(b), the information leakage due to
a DDP-adversary, that exploits dependence relationships be-
tween tuples, exceeds the upper bound computed on a DP-
adversary. This proves our claim that a DDP-adversary can
violate the security guarantees provided by DP mechanisms.

From our analysis, we can see that a differential privacy
technique performed on a dependent data set will disclose
more information than expected, and this is a serious privacy
violation which hinders its applications to real-world data
that may be inherently dependent. Note that we used the
location data just as an example, and our attack observations
are broadly applicable to any dataset that exhibits probabilistic
dependence between user records. Therefore, we have to take
the dependent relationships into consideration when applying
differential privacy to real-world dependent tuples.

V. DEPENDENT DIFFERENTIAL PRIVACY

As demonstrated in Section IV, DP underestimates the
privacy risk in the presence of dependent tuples, resulting in
degradation of expected privacy for existing DP mechanisms.
Hence, for databases with dependent tuples, a stronger privacy
notion is required.

Recent work has made attempts to capture and model
this notion of tuple dependence and correlation in databases.
The Pufferfish framework [25], proposed as a generalization
of DP, incorporates adversarial belief about a database and
its generation as a distribution over all possible database
instances. The Blowfish framework [21], which is a subclass of
the Pufferfish framework, allows a user to specify adversarial
knowledge about the database in the form of deterministic
policy constraints.

Motivated by the above frameworks, we formalize the
notion of dependent differential privacy, as a subclass of
the general Pufferfish framework, incorporating probabilistic
dependence between the tuples in a statistical database. In
addition, we also propose an effective perturbation mechanism
(Section VI) that can provide rigorous privacy guarantees. In
contrast, there are no general algorithms known for achieving
Pufferfish privacy.

For any database D = [D1, D2, · · · , Dn], we define its
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dependence size to be L if any tuple in D is dependent on
at most L− 1 other tuples. We denote by R the probabilistic
dependence relationship among the L dependent tuples. Re-
lationship R could be due to the data generating process as
specified in [24] or could be due to other social, behavioral
and genetic relationships arising in real-world scenarios. We
provide an instance of R in Section IV, where dependence in
the Gowalla location dataset was introduced via the Gowalla
social network dataset and such dependence is probabilistic
instead of deterministic as in Blowfish framework [21]. The
DDP framework is equivalent to the DP framework when R
represents independence between data tuples. We begin by
defining the dependent neighboring databases as follows:

Definition 3. Two databases D(L,R), D′(L,R) are depen-
dent neighboring databases, if the modification of a tuple value
in database D(L,R) (e.g., the change from Di in D(L,R)
to D′i) causes change in atmost L − 1 other tuple values in
D′(L,R) due to the probabilistic dependence relationship R
between the data tuples.

Based on the above dependent neighboring databases, we
define our dependent differential privacy as follows.

Definition 4. (ε-Dependent Differential Privacy) A randomized
algorithm A provides ε-dependent differential privacy, if for
any pair of dependent neighboring databases D(L,R) and
D′(L,R) and any possible output S, we have

max
D(L,R),D′(L,R)

P (A(D(L,R)) = S)

P (A(D′(L,R)) = S)
≤ exp(ε) (12)

where L denotes the dependence size andR is the probabilistic
dependence relationship between the data tuples.

From Definition 4, we see that dependent differential
privacy restricts an adversary’s ability to infer the sensitive
information of an individual tuple, even if the adversary has
complete knowledge of the probabilistic dependence relation-
ship R between the tuples.

A. Security Analysis

Dinur et al. [11] proved that unless a particular amount
of noise is added to the query responses, an adversary can
use a polynomial number of queries to completely reconstruct
the database. Therefore, any privacy framework must provide
privacy guarantees for multiple queries, in order to defend
against such composition attacks [11], [18]. In the following,
we show that DDP is secure against these composition attacks.
Here, ‘secure’ means that the algorithms that provide strict
DDP also provide meaningful privacy in the presence of aux-
iliary information. To this end, we propose both the sequential
composition theorem and the parallel composition theorem for
DDP by extending the previous results on composition for DP
in [30]. Our analysis show that the composition properties for
DDP provide privacy guarantees in a well-controlled manner,
rather than collapsing rapidly as other approaches in [18]. The
proofs for Theorems 3 and 4 follow directly from the ones
presented in [30] for differential privacy and are deferred to
the appendix to improve readability.
Sequential Composition Theorem Multiple queries that each
provides dependent differential privacy in isolation provide
dependent differential privacy in sequence.

,i j i jQ D D D D

,i j i jQ D D D D

0.5

,i j i jQ D D D D

1
,i jP D d D S 2

,i jP D d D S

1.5

Fig. 6. Separation for different queries under dependent tuples.

Theorem 3. Let randomized algorithm At each provide εt-
dependent differential privacy under the dependence size L
and probabilistic dependence relationship R over the same
input data D. The sequence of these algorithms At provides∑
t εt-dependent differential privacy under the same L,R.

Parallel Composition Theorem When the queries are applied
to disjoint subsets of the data, we have the parallel composition
theorem as

Theorem 4. Let randomized algorithms At provide εt-
dependent differential privacy under the dependence size L
and probabilistic dependence relationship R. We denote by
Dt the arbitrary disjoint subsets of the input domain D. The
sequence of these randomized algorithm At provides max

t
εt-

dependent differential privacy under the same L,R.

B. Privacy Axioms

Kifer et al. in [23] suggested two privacy axioms: trans-
formation invariance and convexity that should be satisfied by
any consistent privacy definition. The following theorems show
that our DDP satisfies both the axioms.

Theorem 5. Transformation Invariance Property: For a ran-
domization algorithm A that satisfies ε-dependent differential
privacy under the dependence size L and probabilistic depen-
dence relationship R and any other randomization algorithm
B, BA(·) = B(A(·)) also satisfies ε-dependent differential
privacy under the same L,R.

Theorem 6. Convexity Property: For two randomization algo-
rithms A1,A2 that both satisfy ε-dependent differential privacy
under the dependence size L and probabilistic dependence
relationship R, let Ap represent an algorithm that runs A1

with probability p and runs A2 with probability 1 − p, then
Ap also satisfies ε-dependent differential privacy under the
same L,R.

Proofs for the above two theorems are also deferred to
appendix to improve readability.

VI. MECHANISM DESIGN FOR DDP

In this section, we design an effective mechanism to
achieve ε-dependent differential privacy and support private
query results over dependent tuples. We also describe exten-
sions to the existing LPM-based differential privacy scheme
that allows it to be used in the DDP setting.

To provide more insights into our privacy mechanism de-
sign, we take a further look at Example 1 in Section III. Recall
that the probabilistic dependence relationship R was specified
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max
di1 ,di2

P
(
A([Di = di1 , Dj ]) = [d̃i, d̃j ]

)
P
(
A(Di = [di2 , Dj ]) = [d̃i, d̃j ]

)
= max

di1 ,di2

P (D̃i = d̃i|Di = di1)
∑

dj
P (Dj = dj |Di = di1)P (D̃j = d̃j |Dj = dj)

P (D̃i = d̃i|Di = di2)
∑

dj
P (Dj = dj |Di = di2)P (D̃j = d̃j |Dj = dj)

≤ max
di1 ,di2

P (D̃i = d̃i|Di = di1)

P (D̃i = d̃i|Di = di2)
max

di1 ,di2

∑
dj
P (Dj = dj |Di = di1)P (D̃j = d̃j |Dj = dj)∑

dj
P (Dj = dj |Di = di2)P (D̃j = d̃j |Dj = dj)

(12)

as Dj = 0.5Di + 0.5X where Di, X are independently and
uniformly distributed within [0, 1].

Quantifying the performance of LPM: We use separa-
tion as a metric to analyze the performance of the LPM-based
differential privacy scheme under dependent tuples. Separa-
tion measures the maximum difference between two Laplace
distributions of P (A([Di = d1, Dj ]) = S) and P (A([Di =
d2, Dj ]) = S). Smaller separation implies better privacy
performance. We further consider three query functions sum,
subtraction, multiplication over the same dependent database.
To achieve DP, an Laplace noise with parameter 1/ε is added
to each of the three query results. Assuming independent
tuples, the separation for each noisy query output is the same
ε as guaranteed by DP (shown in Fig. 6). In comparison,
under the probabilistic dependence between tuples, we have
the following interesting observations: 1) the separation may
become larger for the dependent tuples than that under the
independent assumption (see the sum query in Fig. 6); and
2) the change of separation caused by the same dependent
database may vary for different queries. In this section, we aim
to develop a principled perturbation mechanism for supporting
arbitrary query functions, by introducing an extra parameter
dependence coefficient to measure the fine-grained dependence
relationship between tuples.

A. Baseline Approach

A database D(L,R) with dependence size L would result
in a quicker exhaustion of the privacy budget ε in DP by a
factor of L. This observation provides the baseline approach
for achieving the ε-dependent differential privacy as stated in
the theorem below:

Theorem 7. An ε/L-differentially private mechanism A(D) =
Q(D)+Lap(L∆Q/ε) over a database D with the dependence
size L achieves ε-dependent differential privacy, for a query
function Q with global sensitivity ∆Q.

While the above theorem follows directly from the def-
inition of DDP, the baseline approach is not optimal as it
implicitly assumes that all the dependent tuples in the database
are completely dependent on each other. By completely depen-
dent, we mean that the change in one tuple would cause a
dependent tuple to change by the maximum domain value, thus
making the sensitivity of the query over the two tuples twice
the sensitivity under the independent assumption. As we can
see from Fig. 6, the sensitivity for the sum query ∆Q, under
the independent tuple assumption, is 1 as Di ∈ [0, 1]. Under
the dependent tuples, the maximum change in Dj caused by
the change of Di is 0.5, which is only half of the maximum

domain value for Dj . Therefore, the sensitivity of the sum
query over the two dependent tuples is 1.5, which is smaller
than 2×∆Q = 2 as considered in the baseline approach.

This conservative assumption of completely dependent
tuples results in the addition of a lot of unnecessary noise to
the query output rendering it unusable. In real-world datasets,
although the tuples are related, only a few of them are
completely dependent on each other. This insight motivates
us to explore mechanisms that can use less amount of noise
but still satisfy all the guarantees provided by ε-dependent
differential privacy.
B. Our Dependent Perturbation Mechanism

To minimize the amount of added noise we want to iden-
tify the fine-grained dependence relationship between tuples
and use it to design the mechanism. We begin with a simple
query function (e.g., an identity query) over a dataset with only
two tuples D = [Di, Dj ]. The privacy objective is to publish
a sanitized version of the dataset i.e., D̃ = [D̃i, D̃j ] as query
output. We later generalize our analysis to scenarios involving
arbitrary query functions over databases with more than two
tuples, i.e., D = [Di, Dj , Dk, · · · ]. According to Definition 4,
to satisfy ε-dependent differentially privacy requires

max
di1 ,di2

P
(
A([Di = di1 , Dj ]) = [d̃i, d̃j ]

)
P
(
A([Di = di2 , Dj ]) = [d̃i, d̃j ]

) ≤ exp(ε) (11)

where the output distributions of A, due to the change in Di

from di1 to di2 , would be bounded.
Motivated by the LPM in Section II-B, we continue to use

Laplace noise for perturbing the true query output to satisfy
ε-dependent differential privacy. Our objective thus reduces to
finding a proper scaling factor σ(ε) for the required Laplace
distribution. According to the law of total probability4, we
further transform the left-handside (LHS) of Eq. 11 to Eq. 12.
For the first term of the right-handside (RHS) of Eq. 12, we
have

max
di1 ,di2

P (D̃i = d̃i|Di = di1)

P (D̃i = d̃i|Di = di2)
= max

di1 ,di2

exp

(
‖d̃i−di1‖1

σ(ε)

)
exp

(
−‖d̃i−di2‖1σ(ε)

)
≤ max

di1 ,di2

exp

(
‖di1 − di2‖1

σ(ε)

)
≤ exp

(
∆Di

σ(ε)

)
(13)

4We restrict ourselves to discrete variables for simplicity, but all the results
will also apply to the continuous case as in [1].
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where ∆Di is the maximal difference due to the change in
Di. If we ignore the second term in the RHS of Eq. 12 and
combine the remaining terms with Eq. 11 and Eq. 13, we
obtain the scaling factor of the Laplace noise as σ(ε) = ∆Di

ε ,
which is exactly the same form as in traditional DP [12].
Therefore, the LPM that satisfies DP is only a special case
for our mechanism. The second term in the RHS of Eq. 12
incorporates the dependence relationship between Di, Dj and
we will focus our study on this term.

To evaluate the extent of dependence induced in Dj by
the modification of Di, we define the dependence coefficient
ρij as

exp

(
ρij∆Dj

σ(ε)

)

=

∑
dj

P (Dj = dj |Di = di1)P (D̃j = d̃j |Dj = dj)∑
dj

P (Dj = dj |Di = di2)P (D̃j = d̃j |Dj = dj)

(14)

Next, we aim to prove that 0 ≤ ρij ≤ 1. We first have,∑
dj
P (Dj = dj |Di = di1)P (D̃j = d̃j |Dj = dj)∑

dj
P (Dj = dj |Di = di2)P (D̃j = d̃j |Dj = dj)

= max
di1 ,di2

∑
dj
P (Dj = dj |Di = di1) exp

(
−‖d̃j−dj‖1σ(ε)

)
∑

dj
P (Dj = dj |Di = di2) exp

(
−‖d̃j−dj‖1σ(ε)

)
≤ max

di1 ,di2

∑
dj
P (Dj = dj |Di = di1) exp

(
−‖d̃j−dj‖1σ(ε)

)
exp

(
−‖d̃j−d

min
j ‖1

σ(ε)

)
≤maxdj exp

(
‖dj − dminj ‖1

σ(ε)

)

≤ exp

(
∆Dj

σ(ε)

)
(15)

where dmin
j is the value of dj that minimizes exp

(
‖d̃j−dj‖1

σ(ε)

)
.

Comparing Eq. 14 and Eq. 15, we have ρij ≤ 1. Furthermore,
it is obvious that∑

dj
P (Dj = dj |Di = di1)P (D̃j = d̃j |Dj = dj)∑

dj
P (Dj = dj |Di = di2)P (D̃j = d̃j |Dj = dj)

≥ 1

(16)
Comparing Eq. 14 and Eq. 15, we have ρij ≥ 0. Finally,
combining Eq. 11–14, we have

max
di1 ,di2

P (A([Di = di1 , Dj ]) = [d̃i, d̃j ])

P (A([Di = di2 , Dj ]) = [d̃i, d̃j ])

≤ exp

(
∆Di

σ(ε)

)
exp

(
ρij∆Dj

σ(ε)

)
= exp

(
(∆Di + ρij∆Dj)

σ(ε)

) (17)

Therefore, the sensitivity under the dependence relationship
between Di and Dj can be computed as ∆Di + ρij∆Dj .

The dependence coefficient ρij ∈ [0, 1] serves as an ef-
fective metric to evaluate the dependence relationship between

two tuples in a fine-grained manner. We make the following
observations about ρij :

• ρij evaluates the dependence relationship between Di and
Dj from the privacy perspective.
• ρij = 0 corresponds to the setting where P (Dj = dj |Di =
di) is independent of di. Therefore, the mechanism that
satisfies DP is just a special case of our analysis that
takes arbitrary dependence relationship between tuples into
consideration. In addition, using the sensitivity definition
∆Di + ρij∆Dj , we observe that more noise needs to be
added than under the independent assumption that computes
the sensitivity as ∆Di.

• ρij = 1 corresponds to the completely dependent setting
where Dj can be uniquely determined by Di. The baseline
approach in Section VI-A is just a special case of our
analysis where all the dependent L tuples are completely
dependent on each other. As all practical privacy notions
require some assumptions on the allowed distributions, it
makes sense to analyze the fine-grained dependence re-
lationship in order to maximize utility under the same
privacy requirement. Compared with the baseline approach,
less noise would be added for our dependent perturbation
mechanism since we consider fine-grained dependence re-
lationship. In real-world scenarios, tuples are related but
few of them are completely dependent i.e., ρij < 1.
Therefore, our proposed dependent perturbation mechanism
can significantly decrease the added noise compared with
the baseline approach.

• ρij is asymmetric, i.e., ρij 6= ρji. The reason is that the
dependence coefficient evaluates the extent of dependence
in Dj induced by Di, which is causal and directional. For
example, a celebrity’s participation in a social network is
likely to result in the participation of her fans. However, it
may not be the case the other way around.

To generalize and derive ρij for any output d̃j , we reformulate
ρij to avoid the appearance of d̃j . After some manipulations
(details are deferred to the appendix to improve readability),
we have

ρij =

max
di

log

{∑
dj

P (Dj = dj |Di = di) exp
(
‖dj−d∗j ‖1

σ(ε)

)}
σ(ε)

∆Dj
(18)

where d∗j is the optimal solution to argmax
dj1

‖dj − dj1‖1.

Interpreting ρij: To further understand the dependence
coefficient in Eq. 18, we define the Self and Dependent
Indistinguishability terms 5 as follows:

Self Indistinguishability = max
dj1 ,dj2

P (D̃j = d̃j |Dj = dj1)

P (D̃j = d̃j |Di = dj2)

= max
dj1,dj2

log

{
exp

(
‖dj2 − dj1‖1

σ(ε)

)}
=

∆Dj

σ(ε)
(19)

5Dwork et al. in [15] defined Eq. 19 as Indistinguishability, and here we
name it as Self Indistingushiability in order to compare with the Dependent
Indistinguishability of Dj .
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Self Indistinguishability represents the maximal difference
of Dj caused by the modification of Dj itself. We further
define the Dependent Indistinguishability of Dj induced by
Di as

Dependent Indistinguishability

= max
di

log

∑
dj

P (Dj = dj |Di = di) exp

(‖dj − d∗j‖1
σ(ε)

)
(20)

Dependent Indistinguishability evaluates the maximal ex-
pected difference in Dj caused by the modification of Di.
Therefore,

ρij =
Dependent Indistinguishability

Self Indistinguishability
(21)

or in other words, ρij evaluates the ratio of dependent indistin-
guishability of Dj induced by Di and the self indistinguisha-
bility of Dj .

To generalize our dependent perturbation mechanism,
we consider an arbitrary query function Q and compute the
dependent sensitivity of Q over Dj induced by the modification
of Di as

DSQij = ρij∆Qj (22)

where ∆Qj is the sensitivity of Q with respect to the modi-
fication of Dj itself, i.e., ∆Qj = max

dj1,dj2
‖Q(· · · ,dj1, · · · ) −

Q(· · · ,dj2, · · · )‖1. We defer the detailed proof for Eq. 22 to
appendix to improve readability.

Furthermore, we can generalize the dependent sensitivity
to multiple users as

DSQi =

CiL∑
j=Ci1

ρij∆Qj (23)

where Ci1, · · · , CiL represent the L tuples that are dependent
with i-th tuple and ρii = 1. DSQi measures the dependent
sensitivity of Q over all tuples in D caused by the modification
of one individual tuple Di. We further derive the dependent
sensitivity for the whole dataset as

Theorem 8. The dependent sensitivity for publishing any
query Q over a dependent (correlated) dataset is

DSQ = max
i
DSQi (24)

Finally, the dependent perturbation mechanism (DPM) for
achieving ε-dependent differential privacy is formalized as

Theorem 9. For any query function Q over an arbitrary
domain D with dependent tuples, the mechanism A

A(D) = Q(D) + Lap(DSQ/ε) (25)

gives ε-dependent differential privacy.

C. Utility and Privacy Guarantees

While the privacy guarantees of ε-differential privacy
are well understood, the resulting utility due to the privacy
mechanisms is often on a best-effort basis. In the following,
we analyze the utility provided by our DPM. To do so, we
consider a well known utility definition suggested by Blum et
al. in [4].

Definition 5. ((α, β)-Accuracy): A randomization algorithm
A satisfies (α, β) accuracy for a query function Q, if
max
D
|A(D)−Q(D)| < α with probability 1− β.

Based on the definition of (α, β)-Accuracy, we have the
utility guarantee for DPM as

Theorem 10. A DPM A that satisfies ε-dependent differential
privacy would achieve max

D
|A(D)−Q(D)| < α with proba-

bility 1− exp(− εα
DSQ

).

We defer the proof of Theorem 10 to the appendix to
improve readability. Furthermore, we theoretically demonstrate
the utility and privacy superiority of DPM over the baseline
approach in Section VI-A.

Lemma 1. Under the same privacy budget ε, DPM achieves
better utility performance than the baseline approach.

Proof: Given εDPM = εbase, we have βDPM = 1 −
exp(− εα

DSQ
) > 1−exp(− εα

L∆Q ) = βbase (since DSQ = maxi∑
j ρij∆Qj ≤ L∆Q). Therefore, DPM achieves smaller query

errors and thus better utility performance.

Lemma 2. Under the same (α, β)-accuracy, DPM achieves
better privacy performance than the baseline approach.

Proof: Given βDPM = βbase, we have εDPM =

−DS
Q log(β)
α < −L log(β)

α = εbase (since DSQ =
maxi

∑
j ρij∆Qj ≤ L∆Q). Therefore, our DPM results in

better privacy performance.

D. Implications of Dependence Coefficient in System Design

We now discuss a practical challenge regarding the com-
putation of the dependence coefficient. The dependence coeffi-
cient ρij between two tuples Di, Dj relies on the probabilistic
models of the statistical data. Thus, it is difficult to compute
ρij reliably unless the probabilistic models are known. Here,
we provide several effective strategies to compute ρij , as
guidelines for a data publisher to select a proper privacy model
for her own setting.

1) Complete Knowledge of Dependence Relationship:
The first type of analysis assumes that the data publisher has
access to the complete knowledge of the dependence relation-
ship between tuples in advance. Sen et al. [34] computed the
dependence relationship among tuples using an appropriately
constructed probabilistic graphical model. Their method relies
on a fully known probabilistic database in which the dependent
tuples have associated probabilities. Using the dependent prob-
abilities, we can compute the dependence coefficient according
to Eq. 18.

2) Knowledge About Data Generation: However, the
entire dependence information between tuples is not always
available to the data publisher. Under certain scenarios where
the data generation process is known, the data publisher can
estimate the dependence relationship by carefully analyzing
the data generating process. For example, in [24], assuming
that the social network generation model is known, extensive
experiments and analysis were described to estimate the de-
pendence relationship of the tuples.
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Even in the absence of direct dependence information,
analysis can still be carried out to estimate an upper bound
on the dependence coefficient based on auxiliary information
regarding the data (e.g., by using the Gowalla social datasets
in Section IV).

Here, we consider to utilize the friend-based model in [2]
to compute the probabilistic dependence relationship, where
a user’s location can be estimated by her friend’s location
based on the distance between their locations. Specifically, the
probability of a user j locating at dj when her friend i is
locating at di is

P (Dj = dj |Di = di) = a(‖dj − di‖1 + b)−c (26)

where a > 0, b > 0, c > 0. The effectiveness of the
probabilistic dependence relationship in Eq. 26 will be verified
on multiple real-world datasets in Section VII. We believe
that alternate potential strategies for dependence relationship
analysis will be an impactful direction for future work. But no
matter which method is applied, our goal is to evaluate fine-
grained probabilistic dependence relationship among tuples
for designing data sharing algorithms that satisfy ε-dependent
differential privacy.

3) Challenges in Realistic Scenario: Furthermore, we
carefully analyze the influence of inaccurate computation in ρij
on the overall performance of our DPM. We believe that de-
signers are well-placed to compute ρij . If ρij is overestimated,
DPM is conservative and continues to provide rigorous DDP
privacy guarantees. In case of underestimation of ρij , there
are two cases. In the first case, if our estimated ρeij is larger
than the expectation of the adversary who has access to certain
auxiliary information, our DPM can still continue to provide
rigorous DDP guarantees. However, in second case, in which
the underestimation of ρij is smaller than the adversary’s
expectation, we may not achieve the DDP guarantees, but
would still provide better privacy than the traditional DP
mechanism. To demonstrate the performance degradation due
to underestimation of ρij , we launch the inference attack in
Section IV-C2 to DDP clustering query results which are
obtained by utilizing underestimated dependence coefficients
ρeij = 0.8ρij , 0.9ρij in our DPM (ρij is computed according
to Eqs. 26,18,24). Fig. 7 demonstrates that even if 0.8, 0.9
ratio of underestimation for ρij is utilized in DPM, the
leaked information is still well-bounded without uncontrolled
collapsing. Therefore, our DPM suffers little degradation for
the slight underestimation of ρij and is likely to be acceptable
for most realistic settings, thus making our DPM robust in
real-world scenarios.

Furthermore, we consider a natural relaxation of depen-
dent differential privacy to incorporate such imperfect estima-
tion of ρij .

Definition 6. ((ε, δ)-Dependent Differential Privacy) A ran-
domized algorithm A provides (ε, δ)-dependent differential
privacy, if for any pair of dependent neighboring databases
D(L,R) and D′(L,R) and any possible output S, we have

P (A(D(L,R)) = S) ≤ exp(ε)P (A(D′(L,R)) = S) + δ
(27)

where D(L,R), D′(L,R) are dependent neighboring
databases (recall Definition 3), based on the dependence size
L and their probabilistic dependence relationship R.
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Fig. 7. Information leakage for underestimated ρij .

Better accuracy (a smaller magnitude of added noise
owing to the underestimation of ρij) and generally more
flexibility can often be achieved by relaxing the definition of
DDP in Eq. 4. Exploring such relaxations of DDP would be
an interesting direction for future work.

VII. EXPERIMENTAL RESULTS

This section evaluates the performance of our pro-
posed dependent data release algorithm on multiple real-world
datasets (including Gowalla data in Section IV-A, the adult
data in UCI Machine Learning Repository, and the large-scale
Google+ data [19]). Our objectives are: 1) to show the privacy
and utility superiority of our DPM over the state-of-the-art
approaches, 2) to study the impact of enforcing DDP on the
data in terms of machine learning queries and graph queries,
and 3) to analyze the resistance of DPM to inference attacks
described in Section IV-C.

A. Privacy and Utility Guarantees

Consider the application scenario in Fig. IV-B, where
the data provider publishes the perturbed K-means centroids
of the Gowalla location dataset while preserving the privacy
of each individual data. Since the Gowalla dataset contains
no associated probabilistic distributions or data generating
process, we use the general dependent model in Eq. 26 to
compute the dependence coefficient ρij in Eq. 18 by setting
a = 0.0019, b = 0.196, c = 1.05 as empirically determined
according to [2]. Then, the global sensitivity DSQ can be
computed according to Eq. 23 and Eq. 24.

Fig. 8(a) analyzes the (α, β)-accuracy in Definition 5
under various privacy-preserving level ε. We can see that under
the same α and ε, our DPM has much lower β than the
baseline approach (where the dependence size L is set to be
equal to the number of tuples) and the approach of Zhu et al.
in [40]6, i.e., ‖A(D) − Q(D)‖1 ≤ α with higher probability
1 − β. Therefore, DPM achieves much better accuracy than
the existing approaches, and such advantage increases with a
larger privacy preserving level ε. When α = 1000, ε = 1, the
probability of ‖A(D)−Q(D)‖1 < α for DPM reaches nearly
1 while in comparison this probability is approximately 0 for
the other methods. Similarly, Fig. 8(b) demonstrates that DPM
also provides significantly better privacy performance than the
existing approaches under the same utility constraint. There-
fore, DPM shows significant privacy and utility superiority

6The approach of Zhu et al. [40] utilized the linear relationships among
tuples for correlated data publishing, which does not satisfy any rigorous
privacy metric.
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Fig. 9. (a) Clustering accuracy, (b) classification accuracy, (c) degree distribution accuracy of different perturbation methods.

over the state-of-the-art approaches as theoretically analyzed
in Lemmas 1, 2.

B. Application Quality of Service

1) Clustering: In addition to the (α, β)-accuracy, we
further evaluate the utility performance of DPM by sharing
the perturbed query results with real-world applications that
use machine learning algorithms and analyzing the quality of
service for these applications.

We evaluate the clustering accuracy of the dependent
differentially private K-means centroids based on the cross-
validation mechanism. We randomly select 4/5 data from the
Gowalla location dataset for training the dependent differ-
entially private centroids µ̃ = [µ̃1, · · · , µ̃k] and then apply
the perturbed centroids to cluster the remaining 1/5 location
data. We repeat the cross-validation process for 1000 times
and compare the average clustering performance of DPM with
the state-of-the-art approaches. For a more comprehensive
investigation, we evaluate the clustering accuracy of DPM
under various privacy budget ε.

From Fig. 9 (a), we observe that DPM has significantly
better clustering accuracy over the baseline approach and that
proposed by Zhu et al. in [40]. The reason is that our DPM
adds less noise to the K-means centroids by incorporating
finer-grained dependence relationship among tuples. Therefore,
for dependent datasets, DPM outperforms the state-of-the-art
approaches in preserving the quality of service for real-world
applications.

For ε = 0.9, which corresponds to a fairly strong privacy
guarantee, DPM achieves an acceptable clustering performance
with nearly 80% accuracy, which is more than twice that of
the other approaches. This indicates that DPM is capable of

retaining the application quality of service while satisfying a
suitable privacy preserving requirement.

2) Classification: We also apply our DPM to the widely
used classification query in machine learning, by designing
the dependent differentially private support vector machine
(SVM) 7 to the Adult dataset in UCI Machine Learning
Repository 8. This dataset contains multiple users’ profiles and
are labeled according to the users’ salaries. By deleting those
records with missing attributes, we extract a new dataset with
30, 269 tuples and each tuple has 14 attributes.

To compute the dependence coefficient, we first construct
an affinity graph based on the similarities between the users’
profiles, where an edge exists for a pair of users i and j if
‖dTi dj‖1
‖di‖1‖dj‖1 > 0.8 (di,dj are the profiles of tuple i, j respec-
tively). Similarly, we compute the dependence coefficient ρij
for users i and j according to Eqs. 26, 18, and 24. Fig. 9 (b)
shows that our DPM has much better classification accuracy
than the other methods by considering fine-grained dependence
relationship. For ε = 0.9, which represents a strong privacy
level, DPM achieves an accurate classification performance
with 85% accuracy, which is more than twice that of the
other approaches. Therefore, DPM could provide an acceptable
application quality of service while providing rigorous privacy
guarantees.

3) Degree Distribution: We further consider a graph
query whose result is to publish the degree distribution of
a large-scale Google+ dataset [19]. The Google+ dataset is
crawled from July 2011 to October 2011, which consists of

7Detailed process for applying DP to SVM classification can be found in [7].
8 https://archive.ics.uci.edu/ml/datasets/Adult/
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Fig. 10. (a) Comparison of information leakage due to LPM (for achieving DP) and DPM (for achieving DDP) under the same
inference attack. (b) Information leakage due to DPM under various levels of prior information available to an adversary.

28,942,911 users and 947,776,172 edges and thus contains a
broad degree distribution. The degree distribution of a graph
is a histogram partitioning the nodes in the graph by their
degrees [39], and it is often used to describe the underlying
structure of social networks for the purposes of developing
graph models and making similarity comparisons between
graphs9. In addition to the social graph, an auxiliary data is also
provided in this dataset with users’ attributes such as Employ-
ment and Education. To compute the dependence coefficient,
we construct an affinity graph based on the similarities between
the users’ profiles, where an edge is added for a pair of users
i and j if ‖dTi dj‖1

‖di‖1‖dj‖1 > 0.8 and di,dj represent the profiles
of tuple i, j respectively in the auxiliary data. Similarly, we
compute the dependence coefficient ρij for users i and j
according to Eqs. 26,18,24). Denoting C(D) and C′(D) as the
true degree distribution and the perturbed degree distribution
respectively, we define the accuracy for publishing C′(D) as
1 − ‖C(D)−C′(D)‖1

‖C(D)+C′(D)‖1 . By considering fine-grained dependence
relationship, our DPM has significantly higher accuracy for
publishing dependent differentially private degree distribution
of the social graph than the other methods, with almost 10x
improvement as shown in Fig. 9 (c).
C. Resistance to the Inference Attack

To further demonstrate the privacy advantages of DPM,
we analyze the resistance of DPM to real-world inference
attacks as discussed in Section IV-C2. Fig. 10 (a) shows that
the information leakage for DPM is much smaller than that
for the traditional DP under the advanced inference attack
(corresponding to the dependent scenario in Section IV-C2),
and is under similar level as the scenario when the adversary
has no access to the social relationships (corresponding to the
independent scenario in Section IV-C1). That is to say, the
leaked information caused by the dependent tuples has been
largely offset by our incorporating dependence relationship to
DPM. These results show that DPM can rigorously achieve
the expected privacy guarantees for dependent data where tra-
ditional DP mechanisms fail, and also validate the effectiveness
of our general dependent model in Section VI-D2.

We further investigate the influence of different prior
information available to the adversary on the inference attack

9Detailed process for applying differential privacy on degree distribution
can be found in [39].

performance. Fig. 10 (b) shows that the increase in prior
information would be beneficial for the adversary to infer more
information of the users’ location information. Comparing
Fig. 10 (a) and Fig. 10 (b), we can also see that DPM shows
strong resistance to the adversarial inference attack even under
the case where an adversary has access to a large amount
of auxiliary information. Therefore, DDP offers a rigorous
and provable privacy guarantee for dependent tuples, which
demonstrates the necessity of generalizing the standard DP to
our DDP.

D. Summary for the Experimental Analysis
• DPM provides significant privacy and utility gains compared

to the state-of-the-art approaches. Therefore, we can select
a suitable privacy budget ε to achieve an optimal privacy
and utility balance for DPM.
• DPM is more than 2x accurate in computing the K-means

clustering centroids and the SVM classifier, and more than
10x accurate in publishing degree distribution of large-scale
social network, compared with existing approaches (which
may not even provide rigorous privacy guarantees). These
results demonstrate the effectiveness of DPM in real-world
query answering for network data.
• DPM is resilient to adversarial inference attack and provides

rigorous privacy guarantees for dependent tuples that are not
possible using LPM-based DP schemes.

VIII. RELATED WORK

Data privacy is an issue of critical importance, motivating
perturbation of query results over sensitive datasets for protect-
ing users’ privacy [5], [12], [26], [29], [31], [38]. However,
the existing privacy-preserving mechanisms are fraught with
pitfalls. A significant challenge is the auxiliary information,
which the adversary gleans from other channels. Chaabane et
al. [6] inferred users’ private attributes by exploiting the public
attributes of other users sharing similar interests. Narayaran et
al. [32] re-identified users in the anonymous Twitter graph by
utilizing information from their Flickr accounts. Srivatsa et al.
[37] identified a set of location traces by another social network
graph. Other interesting work can be found in [22], [33]. Our
inference attack in Section IV demonstrates that the auxiliary
information would also be useful to infer an individual’s
information from differentially private query results.

Differential privacy is one of the most popular privacy
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frameworks [12]–[16]. Query answering algorithms that satisfy
differential privacy produce noisy query answers such that the
distribution of the query answers changes only slightly with
the addition, deletion or modification of any tuple. Kifer and
Machanavajjhala [24] were the first to criticize that the inherent
assumption (limitation) for differential privacy is that the
tuples within the dataset are independent of each other. They
further argue that the dependence (correlation) among tuples
would significantly degrade the privacy guarantees provided
by differential privacy.

Tuples in real-world data often exhibit inherent depen-
dence or correlations. Handling dependent tuples is a sig-
nificant problem. Kifer et al. proposed the Pufferfish frame-
work [25] to provide rigorous privacy guarantees against adver-
saries who may have access to any auxiliary background infor-
mation and side information of the database. Blowfish [21] is a
subclass of Pufferfish which only considered the data correla-
tions introduced by the deterministic constraints. Our proposed
dependent differential privacy is highly motivated by these
privacy frameworks and is a subclass of the Pufferfish frame-
work that takes the probabilistic dependence relationships into
consideration. We further propose our dependent perturbation
mechanism to rigorously achieve dependent differential privacy
for general query functions.

Membership Privacy [27] is also applicable for dependent
data, however limited anonymization algorithms have been
proposed for this framework. Chen et al. [8] dealt with the
correlated data by multiplying the original sensitivity with
the number of correlated records, which is similar to our
baseline approach in Section VI-A. We have shown, both
theoretically and experimentally, that the baseline approach
would introduce a large amount of noise and thus deteriorate
the utility performance of query answers. Zhu et al. [40]
exploited the linear relationships among tuples which does not
satisfy any rigorous privacy metric. Furthermore, their method
has been verified (in Fig. 8) to have significantly worse privacy
and utility performance compared to our DPM.

IX. DISCUSSIONS AND LIMITATIONS

• Our dependent differential privacy can also accommodate
other dependent or correlated relationships such as temporal
correlations across a time series of dataset, which opens up
an interesting future research direction.

• To form a deeper understanding of our dependent differential
privacy, we will also explore the application of standard
concepts in differential privacy to our framework, such as
local sensitivity, smooth sensitivity [16].

• One limitation of our work is that the dependence coefficient
ρij is exactly known to both the adversary and the DPM
designer. The effectiveness of DPM depends on how well
the dependence among data can be modeled and computed.
How to accurately compute the dependence coefficient and
deal with the underestimation of ρij (as we discussed in
Section VI-D3) would be an interesting future work (note
that the overestimation of ρij continues to provide rigorous
DDP guarantees).

X. CONCLUSION

Differential privacy provides a formal basis for expressing
and quantifying privacy goals. For these reasons there is an
emerging consensus in the privacy community around its use

and various extensions are being proposed. However, there
remain several limiting assumptions in the original framework
that can severely weaken the privacy guarantees expected of
a differentially private mechanism. In this paper, we used an
inference attack to demonstrate the vulnerability of existing
differential privacy mechanisms under data dependence. We
show that social networks that exist between users can be
used to extract more sensitive location information from dif-
ferentially private query results than expected when standard
DP mechanisms are applied. To defend against such attacks,
we introduced a generalized dependent differential privacy
framework that incorporates probabilistic dependence relation-
ship between data and provides rigorous privacy guarantees.
We further propose a dependent perturbation mechanism and
rigorously prove that it can achieve the privacy guarantees. Our
evaluations over multiple large-scale real datasets and multiple
query classes show that the dependent perturbation scheme
performs significantly better than state-of-the-art approaches
used for providing differential privacy.
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APPENDIX

A. Security Guarantees of DP
Integrating Eq. 1 for ε-differential privacy with P(D′), we have∑
D′ P(D′)P(A(D) = S) ≤ eε

∑
D′ P(D′)P(A(D′) = S),

i.e., P(A(D) = S) ≤ eεP(A(·) = S). Combining with
the definition of Leaked Information in Eq. 11, we obtain
Leaked Information =

∑
D P (D)P (A(D) = S) log

P (A(D)=S)
P (A(·)=S)

} ≤ ε.

B. Formulation for ρij in Eq. 18
We consider the general dependent relationships of tuples
to analyze the second term of the RHS of Eq. 12 as

maxdi1 ,di2

∑
dj
P (Dj=dj |Di=di1 ) exp(−

‖d̃j−dj‖1
σ(ε)

)∑
dj
P (Dj=dj |Di=di2 ) exp(−

‖d̃j−dj‖1
σ(ε)

)

≤

maxdi1 ,di2

∑
dj
P (Dj=dj |Di=di1 ) exp(−

‖d̃j−dj‖1
σ(ε)

)

exp(−
‖d̃j−dmin

j
‖1

σ(ε)
)

≤

maxdi1

∑
dj
P (Dj = dj |Di = di1 ) exp(

‖dj−dmin
j ‖1

σ(ε)
), where dmin

j is

the value of dj that minimizes exp(
‖d̃j−dj‖1

σ(ε)
). In order to quantify the

dependence coefficient which is applicable for any output value of d̃j , we

further have exp(
‖dj−dmin

j ‖1
σ(ε)

) ≤ exp(
‖dj−d∗j ‖1

σ(ε)
), where d∗j maximizes

‖dj − d∗j‖1. Substituting dmin
j with d∗j , we obtain Eq. 18.

C. Proof for Sequential Composition Theorem for DDP For any
sequence r of outcomes rt ∈ Region(At) with the same dependence
relationship R, the probability of output r from the sequence of At(D)
is Pr(A(D) = r) =

∏
t Pr(At(D) = rt). Applying the definition of

DDP for each At, we have
∏
t Pr(At(D) = rt) ≤

∏
t Pr(At(D′) =

rt)×
∏
t exp

(
εt

DSQ
× |D −D′|

)
≤ Pr(A(D′) = r)× exp

(∑
t εt
)
.

D. Proof for Parallel Composition Theorem for DDP
For D and D′, let Dt : D ∩ Dt and D′t = D ∩ Dt with the
same dependence relationship R, for any sequence r of outcomes
rt ∈ R(At), the probability of output r from the sequence of
At(D) is Pr(A(D) = r) =

∏
t Pr(At(Di) = rt) Applying the

definition of DDP for each At, we have
∏
t Pr(At(D) = rt) ≤∏

t Pr(At(D′t) = rt) ×
∏
t exp

(
εt

DSQ
× |Dt −D′t|

)
≤ Pr(A(D′) =

r)× exp

(
max
t
εt

DSQ
× |D −D′|

)
≤ Pr(A(D′) = r)× exp

(
max
t
εt

)
.

E. Dependent Sensitivity for Any Query Q
As ρij evaluates the extent of dependence between Di and Dj , the
modification of Di would imply modification of Dj as ρij∆Dj .
Therefore, for any query function Q, we have the corresponding
sensitivity for Dj as ρij∆Qj . Furthermore, we can prove
DSQi = maxdi1,di2 ‖Q([D1, · · · , di1, · · · ])−Q([D1, · · · , di2, · · · ])‖1 =

maxdi1,di2
∫ di2
di1

∂Q(D)
∂Di

dDi +
∫ dmax

j(i)

dmin
j(i)

∂Q(D)
∂Dj

dDj + · · · ≤

∆Qi +
∆Dj(i)
∆Dj

∆Qj + · · · ≤ ∆Qi + ρij∆Qj =
∑CiL
j=Ci1

ρij∆Qj .
Therefore, the global sensitivity for publishing any query function Q on a
dependent dataset is DSQ = maxiDS

Q
i =

∑
j ρij∆Qj .

F. (α, β)-Accuracy Guarantee for DDP
P (max |A(D) − Q(D)| > α) ≤ β =⇒ P (max |Lap(DS

Q

ε
)|

> α) ≤ β =⇒ P (Lap(DS
Q

ε
) > α) + P (Lap(DS

Q

ε
) < −α) ≤ β =⇒

2
∫∞
α t exp(− εt

DSQ
)dt ≤ β =⇒ exp(− εα

DSQ
) ≤ β.

G. Proof for the Transform Invariance Axiom
P (B(A(D)) = O|di1) =

∑
D P (B(A(D)) = O)P (D = D|

di1) =
∑
D

∑
S P (B(S) = O)P (A(D = S|di1) ≤

eε
∑
D P (B(A(D)) = O)P (D = D|di2) = eεP (B(A(D)) = O|di2).

H. Proof for the Convexity Axiom
P (Ap(D) = S|di1) = pP (A1(D) = S|di1) + (1 − p)P (A2(D) =
S|di1) ≤ eεpP (A1(D) = S|di1) + eε(1 − p)P (A2(D) = S|di1) =
eεP (Ap(D) = S|di2).
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