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Abstract—Provenance tracing is a very important approach
to Advanced Persistent Threat (APT) attack detection and in-
vestigation. Existing techniques either suffer from the depen-
dence explosion problem or have non-trivial space and run-
time overhead, which hinder their application in practice. We
propose ProTracer, a lightweight provenance tracing system that
alternates between system event logging and unit level taint
propagation. The technique is built on an on-the-fly system event
processing infrastructure that features a very lightweight kernel
module and a sophisticated user space daemon that performs
concurrent and out-of-order event processing. The evaluation
with different realistic system workloads and a number of attack
cases show that ProTracer only produces 13MB log data per
day, and 0.84GB(Server)/2.32GB(Client) in 3 months without
losing any important information. The space consumption is
only < 1.28% of the state-of-the-art, 7 times smaller than an
off-line garbage collection technique. The run-time overhead
averages <7% for servers and <5% for regular applications.
The generated attack causal graphs are a few times smaller than
those by existing techniques while they are equally informative.

I. INTRODUCTION

There is an increasing need of detecting and investigating
APT attacks in an enterprise environment. A very important
approach to addressing this problem is provenance tracking.
According to previous works [17], [32], provenance captures
multiple aspects of information about an entity in a system:
what the entity’s origin is; how the entity is derived; and when
it originated. In the context of APT defense, entities with
trackable provenance information are of various granularity,
such as processes, network connections, files, and data items
within files. Correspondingly, the what-provenance of such an
entity e is the set of external entities that have causally influ-
enced e’s value or state (e.g., if one file’s content comes from
a number of network connections, then its what-provenance
contains the IDs of the corresponding sessions); whereas, the
how-provenance of entity e consists of events and their causal
ordering — which can be organized as a causal graph — that
demonstrates how (and when) other entities influence e’s value
or state.
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Existing Approaches. Existing techniques fall into two cate-
gories: audit logging and provenance propagation (or tainting).
Audit logging [16], [21], [25], [27], [29], [34]-[36], [39]
records events during system execution and then causally
connects events during attack investigation. They treat pro-
cesses as subjects; files, sockets, and other passive entities as
objects; and assume causality between subjects and objects
involved in the same syscall event (e.g., a process reading a
file). In general, audit logging incurs much lower overhead
than per-instruction provenance propagation. Causal graphs
can be constructed to denote both what- and how-provenance.
Provenance propagation, or tainting [8], [11], [22], [23], [31],
[37], [40], [51] works by first assigning IDs/tags to provenance
sources (e.g., network sessions), and then propagating the
IDs through program dependencies captured during execution.
Provenance propagation usually entails set operations at the
instruction level. Eventually, the set of provenance IDs that
reaches a sink (e.g., a socket for send) denotes the sink’s
provenance. Provenance propagation usually only captures the
what-provenance.

Consider the example in Figure 1. Figure 1 (a) denotes a
simple attack. The user received a phishing email from attacker
“Yellow Spring” and opened the URL in the email through
Firefox. Upon visiting the website, a Trojan executable
for task management was saved on the local disk. Later, the
malware is executed and sends some secret to a remote host.
Fig. 1 (b) shows the events captured by audit logging. Causality
can be derived from events. Depending on the precision
demanded and the scope of the analysis, events can be captured
at different granularity (e.g., syscalls or memory accesses) and
different scopes (e.g., host or whole enterprise).

Fig. 1 (c) shows the provenance propagation approach. IDs
ys and x denote the different provenance sources. Observe
that when pine spawns Firefox, the latter inherits the
provenance of the former. The malware taskman’s prove-
nance is the union of the provenance set of Firefox and
the download URL x. At the end, we know the origins of the
stolen secret, but we do not know its history. Such propagation
can be exhibited within an application, across applications, and
across hosts.

Both approaches have pros and cons, and neither meets
the requirements for enterprise-wide APT detection/forensics.
Logging has the following limitations:

(1) Dependence explosion is a major limitation of most audit
logging. For a long-running process, an output event is as-
sumed to be causally dependent on all preceding input events,



(a) Execution

Pine:
recv(“...@yellowspr.com”);
load_url (firefox, http://.../”);

Firefox:
request(“http://x/taskman.exe”);
fwrite (“taskman.exe”);

Task Manager:
socket_send (y.y.y.y, secret);

(b) Audit Log

1. Pine receives from yellowspr.com
2. Pine spawns firefox

3. Firefox requests taskman from x
4. Firefox writes taskman

5. Taskman sends secret

(¢) Propagation

P[pine]={ys}
P[firefox]=P[pine]={ys}

P[firefox]=P[firefox]V {x}={ys,x}
P[taskman]=P[firefox]={ys,x}

P[secret]=P[taskman]={ys,x}

Fig. 1: Basic approaches to provenance tracing. (a) Actual executions in a top-down order; (b) Approach I: audit logging; (c)

Approach II: provenance propagation.

and an input event is assumed to have causal influence on
all subsequent output events. Such conservative assumptions
create excessive false positive causal relations, making it
difficult to reveal the true causality. In our previous work, we
proposed to divide an execution to autonomous units [27] such
that an output is only dependent on the preceding inputs within
the same unit.

(2) High storage overhead. According to [28], audit logging
easily generates gigabytes of log data per host every day. This
is particularly problematic for APT defense, as APT malware
tends to lurk in the victim host for a long time.

(3) Non-trivial run-time overhead. Although logging has rela-
tively lower run-time overhead compared to provenance prop-
agation because it does not require expensive per-instruction
set operations, many existing logging systems [27], [28] are
built on the default Linux audit logging infrastructure that
can cause up to 40% slow-down to the whole system due to
its poor design (Section V). This makes it undesirable in a
production environment. Researchers have proposed advanced
infrastructures [34]-[36] that can achieve much lower over-
head. However, to achieve the low overhead, these systems
usually do not perform any online event processing, but rather
just record the events, leading to substantial space consumption
and dependence explosion.

The propagation-based approach features much lower space
overhead compared to logging as it does not generate log. It
also has higher precision due to its fine-grained instrumenta-
tion. However it has many limitations that hinder its application
in the real world:

(1) Substantial run-time overhead. Because propagation based
techniques track individual instructions’ execution and prop-
agate (potentially) large provenance sets (Fig. 1 (c)), they
usually incur substantial run-time overhead. State-of-the-art
implementations without hardware support incur multiple fac-
tor of slow-down [23].

(2) Lack of implicit flow handling. Many propagation based
techniques have difficulty handling implicit flow, which is
information flow through control dependencies [30] (usually
induced by program predicates).

(3) Complexity in implementation. Developers have to define
provenance propagation logic for each instruction, a task
which is tedious and error-prone. This problem is exacerbated
when programs rely on third-party libraries; internal run-
time engines (e.g., VMs); and various languages and their
run-times, which all require specific instrumentation/tracking
mechanisms.

In this paper, we develop ProTracer that leverages the
advantages of both approaches and overcomes their respective
limitations. It collects system events and processes them on
the fly. The cost-effective online processing filters out events
that are redundant or irrelevant for provenance analysis, sub-
stantially reducing the space consumption and the size of the
generated causal graphs without affecting effectiveness.

System Goals. The goal of ProTracer is to provide efficient
support for both the what-provenance and the how-provenance
queries on any system objects such as processes and files.
For example, given a corrupted file x, two what-provenance
queries are: (1) “What is the source/entry point of x?” and
(2) “which other files in the enterprise were derived from
(and corrupted by) x?” A sample how-provenance query is:
“Construct a causal graph showing the events/entities that
led to the corruption of x and those that have been further
corrupted by x.” We aim to achieve completeness. In particular,
the result of a what-provenance query on x must include all the
external entities that directly/transitively affected z; the result
of a how-provenance query must capture the set of internal
and external entities that affected x and their causal relations
with x.

The technique works as follows. It first leverages a selective
instrumentation technique similar to BEEP [27] to partition
an execution to units, by emitting special syscalls denoting
the unit boundaries. Intuitively, an unit is an iteration of the
event handling loop that processes an external request or a Ul
event. Different from [27], ProTracer does not simply log all
the syscalls and the unit related events. Instead, it alternates
between logging and provenance propagation. Logging is
conducted when changes are made to the permanent storage
or the external environment such as writing a file and sending
a packet. For other events such as file reads and network
receives, ProTracer performs coarse-grained provenance prop-
agation (tainting), which taints at the level of a unit and an
system object (e.g. file) instead of an instruction and a memory
byte. For example, if a unit receives packets from two network
sessions x1 and xo, the unit is tainted with both sources. If
later the same unit writes to a file on disk, a log entry is
emitted containing the two sources. Then if the file is read by
another unit, the unit is tainted with the two sources too. Note
that avoiding logging as much as possible reduces the space
overhead, and performing unit level and system object level
taint propagation substantially reduces the run-time overhead
compared to instruction level tainting. Unit level tainting does
not lose any precision compared to a log-all-events strategy.
Furthermore, ProTracer decouples its implementation from the



expensive Linux audit logging system. It builds from scratch
a highly optimized system. It has a lightweight kernel module
that simply saves events to a ring buffer. The buffer is shared
with a user space daemon that retrieves these events and
processes them using a thread pool. ProTracer features out-of-
order event processing, meaning that the event processing order
does not need to be identical to the event order, maximizing
concurrency.

Our contributions are summarized as follows.

e  We propose the novel idea of combining both logging
and unit level tainting to achieve cost-effective prove-
nance tracing.

e  We develop an efficient run-time that features on-the-
fly event processing. It not only collects system events,
but also filters out the redundant and irrelevant events
on the fly. It achieves low run-time overhead by out-
of-order event processing through a thread pool.

e We build a prototype and evaluate it on different
systems with various users and workloads for over 3
months, and on a number of real-world attacks that we
reproduce. Our results show that the space consump-
tion of ProTracer is <1.28% of BEEP’s on average,
and about 7 times smaller than our previous offline
log garbage collection technique LogGC [28]. The log
generated per day is roughly 13MB without losing
precision compared to BEEP. The run-time overhead
averages <7% for servers and <5% for user systems,
which is 4-10 times lower than the default Linux
Audit Logging system, on which many techniques
including BEEP were built, and comparable to light-
weight logging systems such as Hi-Fi [34]-[36] that
simply record events without processing them.

Like most existing audit logging systems [15], [27], [28],
ProTracer trusts the kernel and any user space daemon asso-
ciated with the provenance tracing system. More discussion
about the assumptions, limitations and security analysis of
ProTracer can be found in Section VI.

II. MOTIVATION

Scenario: We will use a cyber attack scenario to motivate
our technique. It is a phishing attack, in which an employee
received an phishing email with a malicious link via pine,
an email client. The email mentions that a free beta version
of a costly program that the employee has been hoping to
own is released on the Internet. The employee was excited
and decided to try it out. He clicked the link; a new tab in
Firefox was opened; he then downloaded the file to the local
machine. However, the file is actually a back-door malware.
Later when it is executed, a back-door process is started and
sends some local file to a remote IP address.

State-of-The-Art: In BEEP [27], we observed that many pro-
grams share a common property: their execution is dominated
by event handling loops. More importantly, individual itera-
tions of these loops tend to handle relatively independent tasks
such as serving a client request or handling a UI event. These
observations were made by a study of more than 100 widely
used open-source applications such as servers, browsers, and

social networking applications. It was then proposed to par-
tition an execution to autonomous units, each corresponding
to an iteration of some event handling loop. In particular,
program analysis was developed in [27] to recognize the unit-
inducing loops, leveraging the following three observations:
(1) such loops tend to be at the top level; (2) their loop
bodies must make some I/O syscalls; and (3) their loop bodies
dominate the execution time. Binary instrumentation is hence
used to instrument the loop entry and exit points such that
special syscalls are generated to indicate unit boundaries. An
output syscall is considered only dependent on the preceding
input syscalls in the same unit, whereas in other logging
techniques [15], [16], [25], it is dependent on all the preceding
input syscalls in the whole execution, leading to dependence
explosion.

In some cases, a unit by itself may not fully cover the sub-
execution that handles an independent input. Instead, a few
inter-dependent units together constitute a semantically inde-
pendent sub-execution. In practice, there are memory depen-
dencies across unit boundaries. However, only some of them
— called workflow dependencies — are helpful in connecting
units that belong to the same sub-execution. Examples include
the dependencies caused by the enqueue and dequeue
operations of a task queue. In [27], inter-unit dependencies are
identified via program analysis. A small number of memory
operations that induce inter-unit dependencies are instrumented
to emit special syscalls that help constructing the dependencies
during off-line processing.

Fig. 2 shows the causal graph constructed by BEEP. The
ovals on the left represent the units of sendmail, which
checks the IP address through the Domain Name System
(DNS) (a.a.a.a), and then interacts with the authentication
server (b.b.b.b) and mail server (c.c.c.c) to fetch all emails.
An email is further processed by a separate thread, whose
unit is the one on the right of the dashed circle. The email
is further filtered by procmail before it is opened by
pine. Inside pine, the user clicks the phishing link, which
triggers Firefox. Firefox uses multiple threads to process
a request. The units in the dashed area correspond to units
of the main thread and the tab thread, which uses an IPC
channel 1.1.1i.1 to communicate with a worker thread that
downloads the backdoor file from d.d.d.d. The malware is
later executed through bash and sends a file f to e.e.e.e.

Limitations of the State-of-the-Art. Although the causal
graphs generated by BEEP (e.g. Fig. 2) are usually precise
and concise, there are a few critical limitations that hinder the
application of BEEP in practice.

(1) Substantial space overhead. BEEP generates a few GB
log per-day for a system with a normal workload. This is
because it logs all the provenance related syscalls including
those generated by instrumentation. In [28], an offline garbage
collection (GC) technique LogGC was proposed to prune
redundant events from BEEP logs. However, it still requires
storing all the events before pruning them. During pruning, it
traverses the large log file back and forth in order to identify
the redundant events. Due to the high cost of processing large
files, one cannot afford running the GC technique frequently.

(2) Non-trivial run-time overhead. Although BEEP’s instru-
mentation is lightweight, like many other audit logging systems



a.a.aa sendmail procmail

backdoor

Fig. 2: The simplified causal graph of a phishing attack generated by BEEP [27]. The ovals represent execution units; the
diamonds represent network sessions; the rectangles represent files. The nodes inside the dashed areas are those pruned away

by ProTracer.
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Fig. 3: Linux Audit system architecture.

(e.g. [15]) it is unfortunately built on the Linux Audit system
that has non-trivial run-time overhead by itself. According to
our experiment (Section V), the overhead can be as high as
43%.

A further inspection reveals that the Linux Audit logging
system is unnecessarily heavy-weight. Fig. 3 illustrates the
architecture of the Linux Audit logging system. It consists of
two main parts: a kernel module for system call processing
and a few audit applications that process/store auditing events,
managed by an dispatcher daemon audisp. The kernel mod-
ule receives syscalls from Linux programs. A syscall first goes
through the user filter that decides if the syscall will be further
sent to the other kernel modules for further processing. The
user filter also forwards the syscall to the exclude filter to
determine if the syscall should be prevented from being sent
to the audit apps. After the syscall is processed (by other
modules), the return state needs to go through the exit filter and
then the exclude filter to determine if the state is interesting for
auditing. The control is only given back to the Linux program
after all these activities.

Note that most of the filtering work is done on the kernel
side, which blocks the application execution for a long time.
Second, all types of syscalls have to go through filters even if
they are not interesting. It uses netlink to send data from the
kernel to the user-space daemon, which is slow. Finally, the
audit applications write to the log file, which also generates a
lot of events that need to go through the costly procedure.

In Hi-Fi [36], researchers have developed a more advanced
logging infrastructure with a substantially lower run-time over-
head (3% in a representative workload). They leverage the
Linux Security Modules (LSM) that allow adding light-weight
hooks before accesses to kernel objects such as inodes,
and use a high performance buffer to deliver kernel object
access events to a user space logging application. Despite

its low overhead, Hi-Fi does not perform event processing
on the fly hence it records all events. Furthermore, kernel
object access events are at a level lower than syscalls. As a
result, some commonly used syscalls such as file read may
lead to many kernel object accesses, which induce additional
overhead. Finally, LSM hooks may have difficulty handling
customized syscalls introduced by BEEP as those syscalls do
not lead to any kernel object accesses. As such, the capability
of solving dependence explosion cannot be easily ported to
Hi-Fi.

The Basic Idea of ProTracer. We improve the practicality of
provenance tracing by the following two aspects.

In the first aspect, We develop a lightweight kernel module.
We will leverage a kernel facility called Tracepoints [5]. A tra-
cepoint can be placed in both user and kernel code to provide
a hook to call a kernel function (probe). In ProTracer, we will
insert tracepoints to kernel functions that process provenance
related syscalls (e.g., sys_clone). The tracepoint driver is
extremely lightweight and simply stores the events to a ring
buffer, which will be processed by the user space daemon
through a pool of threads. More details can be found in
Section III.

In the second aspect, we avoid logging as much as possible
by alternating between tainting and logging. We only log
when files are written to the disk or packets are sent through
sockets for either IPC or real network communication. For
other syscalls that only lead to intra-process information flow
such as file reads and network receives, we perform unit level
taint propagation. Tainting has the following benefits:

(1) Avoid logging redundant events. Consider the dashed area
for Firefox in the middle of Fig. 2. At the entry point to
the area on the left, ProTracer will introduce a new taint to
represent the provenance of the hyper link, which is essentially
the sub-graph to the left of the area. The taint is further
propagated through the nodes inside the dashed area. Note
that since no external accesses are performed inside the area,
the taint remains the same until it gets out the area. As such,
we avoids logging events in that duration without losing any
provenance information. The same applies to the dashed box
for sendmail. Similarly, consider an FTP server. Each unit of
the server corresponds to processing a client request. Assume
the client request is to upload a large file, which entails many
network receive syscalls. In a pure logging system such as [27],
all the syscalls need to be logged. In ProTracer, logging these
events is avoided by taint propagation. In fact, all these syscalls
have the same taint and do not add to the taint set.

(2) Avoid logging dead events. Tainting also allows ProTracer
to handle the large number of syscalls that do not have any



permanent effects on the system. We call them the dead events.
For example, syscalls related to temporary files represent a
large portion of a raw audit log [28]. However, since these
files are just used internally and never accessed by others, their
taint propagation usually does not reach any other file writes
or network sends and hence does not trigger any logging.
Lets consider the FTP server example again. Assume during
the processing of the file upload request, the connection is
lost. The FTP server will eventually timeout and exit the
execution unit without writing any data. In this case, the taint
source representing the data session with the client IP is not
propagated to any updates on the storage. Thus nothing needs
to be logged.

Note that the aforementioned two kinds of reductions are
different from the reduction in LogGC [28], which is an
offline log garbage collection technique. LogGC is based on
reachability so that all the events in the dashed area of Fig. 2
cannot be pruned as they are reachable from the backdoor
process. Furthermore, it requires first acquiring the entire log
file and then traversing the large file back and forth to identify
unreachable items, incurring high cost.

(3) Allow concurrent event processing. Introducing a new
taint to represent a provenance set allows out-of-order event
processing. For example, by introducing a new taint when
the dashed region of Firefox in Fig. 2 is entered, the
processing of the Firefox events does not have to wait for
the processing of the events in the sub-graph on the left of the
shaded area. This maximizes the utilization of the thread pool.
More details can be found in Section IV.

User Space Process

Log File with thread pool

5. Write records to log file

User Space 4. Handle syscall events

Kernel Space Ring Buffer

2. Copy syscall information to buffer ring

ProTracer
Kernel Module N

T Kernal functions with
3. kernal module -> syscall Tracepoints

Fig. 4: System architecture overview, dashed lines denote
control flow, solid lines denote data flow, and numbers denote
the order of the events.

1. syscall -> kernal functoin

III. SYSTEM ARCHITECTURE

The architecture of ProTracer is shown in Fig. 4. The
system consists of two main parts: a kernel module and a
user space daemon process. The kernel module is responsible
for collecting syscall events and writing them to the ring
buffer. The user space process fetches and handles these
events, including deciding to log the events or perform taint
propagation.

When a Linux application makes a syscall, the execution
is trapped to the kernel space and the application is blocked

until the kernel finishes processing the syscall. It is hence
critical to ensure the kernel module is lightweight. ProTracer
makes use of an existing lightweight Linux kernel trace facility,
Tracepoints [5]. In particular, we identify the set of kernel
functions that handle syscalls that can induce causality with
system objects or other processes. They mainly fall into the
following categories.

e  All syscalls that operate on file descriptors (represent-
ing regular files, network sockets, device files, pipes
and so on), including creation, read, write, and close.

e  Special syscalls that help trace taints on certain types
of objects. For example, sys_bind for sockets.

e IPC syscalls operating on pipes, semaphores, message
queues, shared memory, and UNIX domain sockets.

e  Process manipulation syscalls including process cre-
ation, termination, and privilege changes (escalation
or degradation).

e  Syscalls generated by program instrumentation to de-
note unit boundaries and inter-unit workflow.

The syscalls that are not monitored are mainly for time
management (e.g. timer_create), fetching information from file
system or kernel (e.g. getpid), and those not implemented
(e.g. getpmsg). To our knowledge, the set is complete for
provenance tracing with certain assumptions. Detailed discus-
sion can be found in Section VI. Tracepoints are inserted at
the entry and exit points of the kernel functions. They are
lightweight hooks that can hand over the execution to our
kernel module so that the syscall and its context can be copied
to the ring buffer. The trace points at the entries are to collect
the parameters while those at the exits are to collect the syscall
results. We separate the two to allow better concurrency in
event processing. Our kernel module is also responsible for
managing the ring buffer to avoid any event loss.

ProTracer uses a user space daemon process to process the
syscall events. To increase throughput, the daemon process
uses a pool of worker threads, which is different from most
existing works. All events are time-stamped so that we do not
need to worry about the event order in the buffer and in the log
file. A general worker thread assignment policy is that syscalls
from the same application cannot be processed by more than
one worker thread. In other words, event processing is in order
for the same application. But it may be out-of-order for events
from different applications. For each event, the daemon process
needs to decide to log it or to perform taint propagation. More
details are discussed in Section IV. All threads share a log
buffer that stores the log records. The log records are written
to disk only when the buffer is nearly full or the system is in a
relatively idle state so that we can reduce the number of disk
I/O operations.

To achieve good performance, ProTracer uses a ring buffer
to share data between the kernel module and the user space
daemon. The ring buffer is similar to the high performance
buffer in Hi-Fi [36], which is also memory-mapped to the user
space so that it can be accessed without any copy operations.
However, we choose to use tracepoints for syscall interception
instead of LSM hooks, to support customized syscalls and to
trace at the syscall level instead of the lower kernel object
access level.



Syscalls:

6. recv from i.i.i.i; 7. read F2;

MT(a):UT(llg): P,F/, Fg, ld/}

UT(u3)+=MT(a)={P, F), F>, id}}
9

10\ Log provenance of F3, which

hasP,F,,F;, ld[

1. writeto F1; 2.read F1; 3.read F2; 4.recvfromi.iii; 5.readFI;
8. write to mem addr. a; 9. read from a;  10. write to F3

Fig. 5: An abstract diagram to illustrate the logging and tainting run-time. The numbers represent the order of the events. The
logging/tainting behavior is highlighted in red on edges.UT (u) and MT(a) are simplified representations of the taint set of a
unit v and address a, respectively. P denotes the current process and idp an ID denoting a network session.

IV. TAINTING AND LOGGING IN THE USER SPACE
DAEMON

In this section, we explain the user space daemon that
alternates between tainting and logging. The basic scheme is
intuitively illustrated by Fig. 5. When receiving a syscall event,
the daemon checks if it is a syscall that makes permanent
changes to the external state (e.g., a file write or a socket
send). If so, it logs the current taint set of the event to disk,
which denotes the provenance of the associated object (e.g., the
logging action in red on edge 1). When a new unit starts (i.e.,
the event handling loop starts to process a new and independent
request), the taint set associated with the unit is reset to only
containing the process itself (e.g., UT[ug] = {P} to the left
of ug), meaning the provenance of the unit only contains the
current process.

Upon an input event, a new taint is created to denote the
current provenance set of the input object (e.g., the new taint
F1 on edge 2 denoting the current provenance set of F} and
ID ¢d; on edge 3 denoting the network session). The taint
is then added to the taint set of the unit, denoting that now
the unit is causally related to the corresponding input source.
Input syscalls only trigger taint propagation instead of logging.
Upon a memory write representing workflow, the current unit
taint set is propagated to the memory (e.g., the highlighted
behavior on edge 8). Later, when another unit loads from the
same memory location, the memory taint set is propagated
to the unit (e.g., the behavior on edge 9). Eventually, when
unit ug writes to F3, the provenance of Fj is the current unit
taint set. Note that F3’s provenance set contains Fp, implying a
causal edge between this event and the previously logged event
about F7. In our implementation, we associate timestamps with
taints and events to facilitate recovery of such causality. It is
worth noting that although there are 10 syscall events, only
two entries are logged, which are sufficient to disclose both
the what- and how-provenance of I} and Fj. In particular, the
how-provenance is represented by the causal graph.

Next, we discuss the details of our design using an abstrac-
tion of the system.

A. Definitions

The definitions related to our discussion are presented in
Fig. 6. To support tainting, three data structures are introduced
to store taints for objects, units, and memory, respectively. In
particular, we use an ObjectTaintStore structure to associate

a singleton taint to an object of two possible kinds: Inter-
Process Communication objects (IPCs) that are essentially a
special kind of sockets, and memory-mapped files. We use
a UnitTaintStore structure to associate a process with a set of
taints, denoting the taints of the current execution unit, which is
usually an iteration of the event handling loop. MemTaintStore
associates a set of taints with a memory address, which is to
support intra-process taint propagation. ProTracer selectively
instruments a very small number of critical memory reads and
writes that denote the inter-unit workflow (i.e., high level data
flow [27]) of the application, e.g. the reads and writes of a
task queue that is used to pass user requests across execution
units. A taint can be a time-stamped IPC, file, or an ID that
represents a taint source, which can be either a network session
or an email received. In other words, we use IDs to denote
external sources. The mapping is maintained by a TaintSource
structure. In contrast, for objects internal to the system we
may use a taint consisting of the object and a timestamp ¢s to
denote the provenance of that object at ¢s, which may represent
a set of IDs (e.g., in event 2 in Fig. 5 F; denotes the current
provenance of file Fy, which contains P and idy).

As mentioned in Section I, we cannot capture all important
provenance by taint propagation alone, which does not record
the history of an object or a process. As such, in addition
to taint propagation, we also log important events. More
specifically, we log all the permanent changes to the system,
such as file writes, file deletes, outgoing network traffic, and
process creation, together with their taints. LogBuffer is a
memory buffer to store these changes. We use a memory
buffer to avoid frequent disk accesses. More importantly, the
memory buffer allows us to easily avoid logging events related
to temporary files, which are often in a large number. More
discussion can be found later.

As mentioned in Section III, ProTracer intercepts all
syscalls related to provenance, including those related to units.
We abstract these syscalls to a few representatives as shown in
Fig. 6. In particular, they denote file, IPC, network session, pro-
cess spawn, memory reads/writes denoting inter-unit workflow,
unit enter/exit, and taint source related operations. The run-
time behavior corresponding to these events will be discussed
next. Note that although our implementation intercepts both the
entry and the exit of a kernel function that handles a syscall,
our abstraction combines the two events into one abstract event
for discussion simplicity.



OT € ObjectTaintStore = (IPC | File) — Taint

T'Src € TaintSource n= ID — (Session | Email)

UT € UnitTaintStore = Process — P(Taint)
MT € MemTaintStore = Address — P(Taint)
t € Taint u= (IPC | File | ID) x TimeStamp

LB € LogBuf fer

= (WRITE x (File | Session | IPC) x P(Taint) x TimeStamp |

FileDel(Process, File) |

Fork(Process, Process) |

EmailRecv(Process, Email)

DEL x File X P(Taint) x TimeStamp | FORK X Process x P(Taint) x TimeStamp)
e € Event = FileOpen(Process, File) | FileRead(Process, File) | FileWrite(Process, File) |

IPCRead(Process,IPC) | IPCWrite(Process, [PC) |
SessionCreate(Process, Session) | SessionRead(Process, Session) |

SessionWrite(Process, Session) |

MemWrite(Process, Address) | MemRead(Process, Address) |
UnitEnter(Process) | UnitExit(Process) |

f € File ce€IPC a¢€ Address p € Process x € Session m € Email ts € TimeStamp

Fig. 6: Definitions for Logging and Tainting.

TABLE I: Logging and Tainting Rules.

[ Rule # | Event | Action
1 | FileOpen(p, f) OT[f] = (f, getTime());
2 | FileRead(p, f) UT[plu = {OT[f]}
3 | FileWrite(p, f) LB = LB+ (WRITE, f,UT[p] U {OT[f]}, getTime())
4 | FileDel(p, f) if (f is owned by p) LB = LB — (x, f, x,*); else LB = LB + (DEL, f, UT|p], getTime());
OT[f] = nil;
5 | IPCRead(p,c) OT[c] = (c,getTime()); UT[p] = UT[p]U {OT]c]}
6 | TPCWrite(p,c) LB = LB + (WRITE, ¢, UT|p], get Time())
7 | SessionCreate(p,xz) | t = newSource(); OT[z] = (t, gettime())
8 | SessionRead(p,x) UTI[p] = UT[p]U{OT[z]}
9 | SessionWrite(p,x) LB = LB + (WRITE, z, UTp], getTime())
| 10 [ Fork(p1,p2) | LB = LB + (FORK, p2, UT[p1], getTime()) |
11 | MemWrite(p, a) MTla] = UT|p];
12 | MemRead(p, a) UTI[p]u = MT1Ia]
| 13 [ UnitEnter(p) | UTp] ={{p,—)} |

| 14 [ EmailRecv(p, m)

[ ¢ =newSource(); UT[p] = UT]p] + {{t, getTime())} |

B. Run-time Operation Rules

Table I describes the taint propagation and logging oper-
ations conducted by the threads in the user space daemon. A
worker thread (in the daemon) receives an event from the ring
buffer and processes it based on the rules in the table.

File Operations. Rules 1-4 are for file related event process-
ing. For a file open event with process p opening a file f,
ProTracer creates a new taint that consists of the file object and
the current timestamp. The taint denotes the provenance set of
the file at this moment, which may include multiple external
sources. The principle is that ProTracer uses a singleton taint
to represent a provenance set for a system object that can
propagate information across processes, including file and
IPC. This is a critical design decision which will be further
explained. The taint is then associated with f through the
ObjectTaintStore OT. Upon a file read, the taint set of the
current execution unit of p is enhanced with the taint of f,
meaning the current execution of p is also affected by the
provenance of f. Upon a file write, a log entry is inserted to
the log buffer denoting the write operation and the associated

taint set, which is the union of the current unit taint set and the
file taint (Rule 3). Intuitively, after the write, the file inherits
the taints of all the preceding input syscalls in the same unit.
The design choice of using a singleton taint to denote the
provenance (taint) set of an object on external storage has a
few critical advantages over the design of directly propagating
provenance sets.

e An object may be transitively dependent on a large
set of taint sources. It is expensive to propagate taint
sets, which entails allocating space and performing
set unions. Hence, ProTracer uses a singleton taint
consisting of the object and a timestamp to denote
the current taint set of the object and propagates the
taint.

e The design allows out-of-order processing of events
in the ring buffer. As mentioned earlier, the kernel
inserts events with timestamps to the ring buffer and
the user space daemon retrieves and handles these
events from the same buffer. Events from different
processes may be dispatched to different threads that
execute concurrently. As such, event processing across



processes may be out-of-order. For example, assume
two applications A and B. A writes to a file f and
closes it before B reads it. The file read event (in
B) may be processed before the file write (in A) is
processed. If we directly propagate the taint set of f
from A to B, we have to wait for the file write to be
processed before processing the file read, substantially
limiting concurrency. With the current design, the file
read will use a fresh taint, without waiting for the
computation of the set. The timestamps of the taint
set (recorded to the log buffer at the write event) and
the fresh taint (introduced at the file read) would allow
ProTracer to infer the proper mapping between the set
and the new taint during the offline causal analysis.

e The design allows us to record not only the what
provenance, but also the how provenance. Traditional
techniques based on standard tainting [21] can only
record the set of taint sources associated with an
object, missing the history about how the object was
created and updated. With the current design, each
time an object is updated (i.e. written to the permanent
storage), a log entry representing the set of taints of
the object is recorded.

Upon deleting a file (Rule 4), ProTracer not only resets
the taint of f, but also removes all the log entries in the
buffer related to f if the process p is the exclusive owner of f,
meaning f is a temporary file that does not escape the lifespan
of its owner. We say the p is the owner of f if p creates f
and f is never read by another process. If p is not the owner,
the log entries related to f cannot be removed as the history
of f may still be of interest. For example, an APT attack may
remove a malicious library generated in an earlier phase of
the attack (by another process) to cover its trail. The history
of the malicious library is still valuable although it is deleted.
In addition, the deletion event itself needs to be logged as it
is part of the malicious behavior. The log buffer is flushed to
the disk when it is close to full. It often takes a long time
for the log buffer to reach its capacity so that most temporary
file deletes happen before the buffer is flushed, allowing the
pruning of dead log events (Section II) such as temporary file
reads and writes.

IPC Operations. Processes may use IPC (e.g. pipes) to
communicate with each other. Upon an IPC write (Rule 6), a
log entry is added to denote the write and the provenance of the
write, which is essentially the current unit taint set. Following
the design policy of using singleton taints to allow out-of-order
processing, upon an IPC read a new taint consisting of the IPC
object and the current timestamp is created and added to the
unit taint set of the receiver process (Rule 5).

Network Operations and Process Spawn. Network opera-
tions are handled similar to file operations. We consider a
network session as a unique taint source. As such, each time a
session is created, a new taint ID is created and associated with
the session. When a process p receives packets from a session,
the taint of the session is added to the unit taint set of p (Rule
8). When p sends a packet through a session, the provenance
of the network send is denoted by the unit taint set of p. A log
entry containing the taint set is recorded. Such entries allow
ProTracer to construct causality across hosts. When a process

p1 spawns another process p2 (Rule 10), the provenance of the
child is the unit taint set of its parent. A log entry is added to
record the fork and the corresponding taint set.

Execution Unit Related Operations. These events are gen-
erated by selective program instrumentation [27]. Application
executables are instrumented in a very small number of places
to emit special syscalls to indicate the beginning and the end of
an execution unit, and memory operations that denote the high
level workflow between units. ProTracer needs to propagate
taints through the memory object involved. Upon a write to a
memory object, the unit taint set is propagated to the object
(Rule 11). Later, when the same memory object is read in
another unit, its taint set is inserted to the taint set of the new
unit (Rule 12). As mentioned in Section II, execution units are
considered autonomous and their correlations are only through
the workflow related memory objects explicitly monitored by
ProTracer. Therefore, when the execution leaves a unit and
enters a new unit, the unit taint set is reset to only containing
the process itself (Rule 13).

Taint Source Operations. Upon events such as receiving an
email, a new ID representing the source is created and inserted
to the unit taint set (Rule 14). Note that these events may
be at a higher level than syscalls. In our implementation, the
corresponding protocol libraries are instrumented to generate
these high level events.

Example. Consider the example in Fig. 7. We have two
programs running in the system: a browser and a PDF reader.
Parts of the code snippets of the two applications are shown.
Although the code snippets simulate the workflow in a real-
world browser and a real-world PDF reader, they are sub-
stantially simplified and abstracted to be consistent with our
definitions in Fig. 6. Specifically, the browser has two threads:
the UI thread that handles UI events and the worker thread
that performs background operations such as downloading a
file. The event handling loop dominates the execution of the
UI thread. The beginning of the loop is instrumented by a
function UnitEnter () that will produce an event denoting
the start of a unit. In lines 8-11, if the UI event is the click
of a hyper link, the URL is added to the work queue. Since
the queue operations denote the workflow across units, the
enqueue operation is instrumented to generate a memory write
event (line 9). The worker thread execution is dominated by
the loop in lines 22-36, which acquires a request from the
work queue and processes it. Lines 23-24 denote the unit
instrumentation and the memory read instrumentation. If the
request is to access a URL, a temporary file “tmp” is created to
store the downloaded content. A session is created and used to
download the resource (lines 28-29). The downloaded content
is written to the file (line 30). An IPC object is created to
communicate with the PDF reader to display the PDF file
(lines 32-33). The temporary file is deleted at the end (line
34).

The PDF reader is also event driven. If it receives an IPC
request to render a PDF file, it acquires the file through IPC and
saves it to buf (lines 56-57) before rendering it. If it receives
a UI request to save the PDF file, it creates a file and writes
buf to the file (lines 62-64). ProTracer detects that bu f carries
workflow across units (i.e. the loop iterations corresponding to



(a) Browser code

(b) PDF reader code

UI Thread Worker Thread 50 | ...
1. 20]... 51 |/*Event processing loop*/
2 |/*UI event dispatching loop*/ 21|/*Event processing loop*/ 52 | while (true) {
3 | while (true) { 22| while (!q.empty()) { 53 | UnitEnter();
4 UnitEnter (); 23| UnitEnter(); 54 | e=poll(...);
5 ui_event = poll (...) 24| MemRead(q.head()); 55| if (e==OPEN_BY_IPC) {
6 if (ui_event.type==...) 25| u=q.dequeue(); 56 c=IPCCreate(browser,...);
7 26| if (u==URL_REQ) { 57 buf=IPCRead(c);
8 if (ui_event.type==HYPER LNK) { | 27 f= FileCreate(“tmp”); 58 MemWrite(buf);
9 MemWrite(q.tail( )); 28 x=SessionCreate (u, ...); 59 pdf render(buf);
10 q.enqueue(ui_event.url); 29 buf=SessionRead(x); 60| }
11 3 30 FileWrite (f, buf...); 61 | if (e==SAVE_AS) {
12 ... 31 62 o= FileCreate(“a.pdf”);
13|  UnitExit (); 32 c=IPCCreate(reader, ...); 63 MemRead(buf);
14} 33 IPCWrite(c, f); 64 FileWrite (o, buf...);
34 FileDel(f); 65
35 66 |}
3603 67
(c) A sample system execution
Program |TimeStamp Event Rule OT[1/MT[] UT[] LB
1|UnitEnter(b) 13 UT[b]={OT[b]}={<b,->}
2| MemWrite(b,q[0]) 11|MT[q[0]]=UT[b]={<b,->}
3| UnitEnter(b) 13 UT[b]={OT[b]}={<b,->}
4|MemRead(b,q[0]) 12 UT[b]=UT[b] U MT[q[0]]={<b,->}
5|SessionCreate(b,x) 7|0T[x]=<t,,5>
Browser -
6|SessionRead(b,x) 8 UT[b]=UT[b] U {OT[x]}={<b,->, <t;,5>}
7|FileWrite(b,f) 3 LB=<W,f{<b,-><t;,5>},7>
LB=<W,f{<b,-><t;,5>},7>;
8[IPCWrite(b,c) 6 <W,c,{<b,-><t;,5>},8>
9|FileDel(b,f) 4| OT[f]=nil LB= <W,c,{<b,->,<t1,5>},8>
10| UnitEnter(r) 13 UT[r]={OT([r]}={<r,>}
11|IPCRead(r,c) 7|0T[c]=<c,11> UT[r]=UT[r] U OT[c] ={<c,11>,<r,->}
12| MemWrite(r,buf) 11| MT[buf]=UT[r]={<c,11><r,->}
Reader 13| UnitEnter(r) 13 UT[r]={<r,->}
14| MemRead(r,buf) 12 UT[r]=UT[r] U MT[buf]={<c,11><r,->}
LB=<W,c,{<b,-><t,,5>},8>;
15 |FileWrite(r,0) 3 <W,0,{<c,11><r,->},15>

Fig. 7: Example for the logging and tainting run-time. The shaded statements correspond to syscalls. The statements in red are

those instrumented by ProTracer to generate special events.

the IPC and the save-as-a-file operations), the read and write
of buf are instrumented (lines 58 and 63).

Fig. 7 (c) shows a sample execution of the system, in which
the user clicks a hyper link denoting a remote PDF file, the file
is then downloaded and rendered by the reader, and finally the
user further saves the file. The table shows the events generated
by ProTracer and how the run-time processes these events. The
second column shows the timestamps; the third column shows
the events with process b and r denoting the browser and the
reader, respectively. The fourth column shows the rules applied
and the last three columns show the state of the various data
structures.

Observe that in the first unit corresponding to the click of
the hyper link, the UnitEnter event causes the unit taint of
b to be reset to {(b, —)}. Upon the MemWrite at 2, the taint
of the queue is updated to contain the taint of the current unit.
The execution then proceeds to the unit from the worker thread
that downloads the file. At 3, the unit taint set is reset. At 4,
the taint set of the queue is unioned with the unit taint set. At
5, since a network session is considered an external source, an
ID t; is generated to denote the source. The taint of the session
is inserted to the unit taint set at 6 due to the SessionRead

event. At 7, the downloaded content is saved to the temporary
file f, and thus a log entry is inserted to the log buffer LB to
denote the write and the provenance. The file is further passed
to the reader through an IPC c. The IPCWrite event leads
to another log entry at 8. At 9, the deletion of f leads to the
removal of the first log entry as f is a temporary file.

Timestamps 10-15 correspond to the execution of the
reader, which consists of two units. The first one renders
the file and the second one saves the file. At 11, a new
taint is created to denote the provenance set of the IPC
object ¢ at timestamp 11, which essentially denotes the set
{{(b,—), (t1,5)}. The taint is inserted to the unit taint set of
r. The unit taint set is propagated to buf at 13. In the second
unit (timestamps 13-15), the taint set of buf is retrieved and
inserted to the unit taint set. When the file is written, another
log entry is added to denote the write.

There are three important things that we need to point
out. (1) Although there are 15 events, ProTracer only needs
to log two of them, which are the two in LB at the end. In
other words, on-the-fly taint propagation avoids storing a lot of
events. (2) ProTracer introduced a new taint (¢, 11) to denote
the provenance set of ¢ at 11 such that the processing of the



reader events and the processing of the browser events can
be performed concurrently by different threads. And from the
timestamp 11 and the log, we know that (¢, 11) must represent
the taint set in the first log entry. (3) The log entries reflect
the history of the file, whereas existing techniques only track
the sources of the file.

C. Handling Global File Accesses

A long running execution can often be divided to three
parts. The first one is the start phase, which is responsible for
loading configurations, allocating resources like file descriptors
for application log files. The second one is the event handling
loop, which handles a large number of external requests.
The third one is the closing phase, where all resources are
deallocated before the process terminates. In the previous
sections, we mainly focus on the event handling loops, which
dominate and generate units. However, handling the other two
phases, especially file operations in those phases, is equally
important. Files opened in the start phase are often used
throughout the whole execution. For example, the Apache
httpd server opens its application log files (e.g. access log
and error log) in the start phase. The access log will be written
within any unit that handles an external request. This log
file is a shared object across most of the units, which would
cause unnecessary dependence between units. To address this
problem, we apply a special policy to objects opened in the
start phase. In particular, these objects are stated as global in
the log. During execution, they are not considered as shared
objects and operations on these files are not logged.

Unlike log files, which are opened in the start phase and
not closed until the end phase, some objects used in the start
phase have a very short life time. They are usually opened,
read and then closed. Typical examples include configuration
files and libraries used by an application. Our policy is to log
these events, because the data read from these files can be
possibly utilized for a malicious purpose. An example is that
a malicious library downloaded from a remote site is loaded
by a normal application in the start phase.

Discussion: Completeness of ProTracer. As introduced in
Section I, we aim to capture all the external and internal
entities that affect a system object and their casual relations.
With the assumption that all the provenance related syscalls are
intercepted by ProTracer, we want to show that the alternation
between tainting and logging and the pruning of events (e.g.,
through file deletions) do not affect completeness. According
to the rules in Table I, within a unit, all input events are
captured and propagated to the taint set of the unit. With the
assumption that all the inter-unit workflows through memory
accesses are captured, the taint set is properly propagated
across units. Upon an outgoing syscall, the set is logged. Dur-
ing offline analysis, causal edges are introduced by connecting
a log entry containing a taint (of an input file), such as taint F
on edge 2 in Fig. 5, and a preceding log entry containing the
provenance set corresponding to the taint (e.g., the log entry
generated by the action on edge 1 in Fig. 5). This ensures not
only that the set of external sources is complete, but also the
history of the object is captured (by the causal graph). The way

'"We will discuss situations where our assumptions may not hold in
Section VL.
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that ProTracer prunes log entries related to temporary files is
safe because only the log entries related to a file owned by the
process are removed. When the file is owned, its information
cannot reach other processes. In the case that a temporary file is
copied to another permanent file, its provenance is completely
inherited by the permanent file so that the temporary file
log entries are no longer useful. ProTracer also precludes
syscalls caused by application logging as they introduce bogus
causality across units. Note that application log usually records
a subset of what ProTracer is already recording and is hence
redundant.

V. EVALUATION

In this section, we will show the evaluation results of
ProTracer. The experiments were conducted on five identical
machines with four cores and 4GB RAM. Most of the bina-
ries in our experiment machines have been instrumented by
BEEP [27].

A. Effectiveness

Daily Usage: In the first experiment, we emulated the daily
(24 hours including break time) usage of five computer users,
and collected logs. To compare the space consumption, we run
both ProTracer and BEEP [27] at the same time during the
experiment. After the logs were generated, we also applied
LogGC [28] to garbage collect the BEEP logs to acquire the
reduced logs. To create workload diversity, we emulated users
exhibiting different usage patterns: User 1 uses the system to
run a web server for a group project. An FTP server is also
running in the same system; User 2 is new to Linux. He just
tries out various applications in the system and accesses his
personal emails and the Internet; User 3 is preparing for an
exam. She is mainly reading documents and watching video
lectures; User 4 uses vim a lot to finish his course project
report besides accessing the Internet; User 5 mainly uses the
system for watching movies and communicating with friends.
In addition, we performed an extended 3-month emulation of
user 1, whose machine is used as a server; and user 4, who
actively uses client programs.

We compare the number of log entries and the log file sizes
for BEEP, LogGC, and ProTracer. The results are presented
in Table. II. Columns 8 and 9 show the ratios between the
ProTracer logs and the BEEP logs, whereas the last two
columns show the same ratios between the LogGC logs and
the BEEP logs. Observe that ProTracer can significantly reduce
the number of events that need to be logged. On average,
ProTracer only needs to log 1.85%(Daily)/1.45%(3 months)
of the entries in BEEP. Since ProTracer records taint IDs,
our log file format is slightly more efficient than BEEP and
LogGC. On average, ProTracer’s disk space consumption is
only 1.28%(Daily)/1.02%(3 months) of BEEP’s. The results
vary for different users because of the different workloads
and use patterns. Even in the worst case (user 1 that hosted
servers), ProTracer generated less than 4% of the log entries,
and consumed less than 2% of the disk space.

Compared to LogGC, ProTracer has better space efficiency
in most cases. This is reasonable because LogGC garbage-
collects events based on their reachability from live system
objects. In other words, events that do not contribute to any



Logs I BEEP | ProTracer | LogGC [ ProTracer/BEEP | — LogGC/BEEP |
& | #ltems ] Size(KB) | #Ttems [ Size(KB) | #Ttems [  Size(KB) | #ltem [ Size | #ltem [ Size |
Server 274,242,874 157,839,158.66 3,371,453 880,584.40 45,429,888 21,311,715.08 1.23% 0.56% 16.57% 13.50%
3 Months Client 500,928,294 168,269,687.89 7,844,783 2,437,009.51 30,449,339 10,037,472.39 1.57% 1.45% 6.08% 5.97%
Average 387,585,584 163,054,423.27 5,608,118 1,658,796.95 37,939,614 15,674,593.74 1.45% 1.02% 9.79% 9.61%
1 3,610,501 1,673,830.40 133,159 30,830.20 637,596 280,576.00 3.69% 1.84% 17.66% 16.76%
2 1,730,339 581,389.08 37,205 8,873.10 293,957 98,768.73 2.15% 1.53% 16.99% 16.99%
Daily 3 2,221,662 743,986.67 9,558 2,245.02 3,382 1,351.68 0.43% 0.33% 0.15% 0.18%
4 3,768,783 1,265,993.45 52,009 16,078.02 183,947 60,139.52 1.38% 1.27% 4.88% 4.75%
5 2,471,859 829,968.11 23,998 7,226.04 22,248 8,970.24 0.97% 0.87% 0.90% 1.08%
Average 2,760,629 1019033.54 51,186 13,086 228226 89961.23 1.85% 1.28% 8.27% 8.83%
Apache 3,262,452 4,570,766.23 47,305 31,380.62 288,482 404,797.44 1.45% 0.69% 8.84% 8.86%
Vim 1,089,732 370,508.82 11,215 3,053.91 99,452 34,017.28 1.03% 0.82% 9.13% 9.18%
Firefox 3,672,740 4,655,331.54 302,873 288,344.52 352,587 447,406.08 7.70% 6.62% 9.60% 9.61%
W3M 368,752 259,001.72 25,793 18,068.22 82,959 57,671.68 6.99% 6.98% 22.50% 22.27%
Applications ProFTPD 48,374 12,183.53 689 124.80 4,539 1,228.80 1.42% 1.02% 9.38% 10.09%
pp Wget 873,205 189,782.34 7,938 897.81 4212,847 88,811.52 0.91% 0.47% 47.28% 46.80%
Mplayer 858,236 188,811.93 240 16.00 0 0.00 0.03% 0.01% 0.00% 0.00%
Pine 59,125 21,285.72 648 286.72 642 327.68 1.10% 1.35% 1.09% 1.54%
Xpdf 56,083 9,534.20 64 16.00 0 0.00 0.11% 0.17% 0.00% 0.00%
MC 7,823 9,026.81 26 8.00 0 0.00 0.33% 0.09% 0.15% 0.00%

TABLE II: Comparison of effectiveness of various systems with different duration (3 months and 24

applications.

live system objects are removed. ProTracer not only avoids
logging such dead events (Section IV), but also precludes
redundant events that affect live system objects (e.g. repetitive
socket reads from the same session and execution units that
do not access any taint sources but rather serve as part of the
information flow path). In some cases, LogGC is more space
efficient (e.g. user 3). This is mainly due to temporary files.
LogGC is an offline log reduction method, which has sufficient
information to precisely decide if a file is temporary. ProTracer
uses the log buffer to delay writing log entries to the disk,
hoping that the temporary file related entries will be removed
by the time the buffer is flushed. However, some temporary
files related log entries will be flushed to disk if the files are not
deleted by the time the buffer is flushed. Besides, ProTracer
also logs events that belong to the start and end phases of
an execution, whereas BEEP/LogGC ignores those events. For
user 3, MPlayer and Xpdf were frequently used and they
produced a large number of temporary files. LogGC was able
to remove all the records that belong to these two programs,
whereas ProTracer keeps some of them. Also observe that on
average, ProTracer only generates 13MB log per day, which
is very affordable.

Application Perspective: We also compare the space con-
sumption of the different systems on various applications.
The logs specific to applications are extracted from the whole
system logs. The results are presented in the lower half of
Table II. Observe that the ProTracer logs are significantly
smaller compared to BEEP Logs. The number of records is
reduced to less than 8%, and the log size shrinks to less
than 7% for all programs. The results vary across different
applications due to the different behavioral patterns of the
applications. For browsers like Firefox, accessing a single
web page can introduce many taints as it may access the web
server, advertisement server, image storage server and so on.
Since each resource request will cause a log entry, the log
buffer is filled up much faster and more frequently, compared
to other applications. As a result, ProTracer records more
temporary files related events. Programs like Xpdf interact
with files and the screen. There is no outgoing information
via sockets or other files. ProTracer only needs to record a
small number of events in the start and the end phases. For
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hours); users, and

most programs, ProTracer occupies less space than LogGC.
But for some of them (e.g. Xpdf), LogGC performs better.
This is because LogGC ignores the events in the start and the
end phases of a process. However, the results also show that
the overhead is minor for these applications.

B. Logging Overhead and Scalability

We also perform experiments to study the run-time over-
head and scalability of ProTracer. Fig. 8 shows the accumu-
lated log size over time for user 1. The solid line shows the
growth of the BEEP log size over time, and the dashed line
shows ProTracer’s. In general, the growth is similar although
the scales of the sizes are different. The sharpest growth occurs
in the 15th-20th hour, indicating the user was intensively using
the system. Even in this period, the growth of the ProTracer
log is about 13MB, suggesting very good scalability. There
are some shape differences between the two lines near the
20th hour. This is mainly because ProTracer has better log
reduction for the applications used during that time period,
compared to other applications.
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Fig. 8: Accumulated log size from the one-day execution of
BEEP and ProTracer. Note the size of BEEP log is measured
by megabytes, whereas the ProTracer log is measured by
kilobytes.

Fig. 9 and Fig. 10 show the run-time overhead comparison
between ProTracer and the default Linux Audit system, with
the same set of syscalls monitored. Note BEEP is built on the
Linux Audit system and hence more expensive. We perform



two sets of experiments. The first one is for server programs.
We use the Apache Benchmark [1] to test two web servers
Apache and MiniHttp, and ftpbench to test ProFTPD.
We also test different concurrency configurations, with the
number of requests sent at the same time being 1, 2, 4, and
8. The results are shown in Fig. 9. The benchmarks tend
to give the system a lot of pressure, which would cause
higher overhead than regular usage. The baseline we use is
the native Linux system without running the Linux Audit
system. Observe that the overhead of ProTracer is less than 7%,
whereas the Linux Audit system has a much more significant
overhead (more than 5 times larger).
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Fig. 9: Run-time overhead with different concurrent thread(s)
for server programs.

We also perform experiments for client programs. We use
standard benchmarks if they are available such as SunSpider
for Firefox. Otherwise, we use the batch mode for programs
like vim or W3M. We perform the experiments with ProTracer
and with the Linux Audit system. The baseline we use here is
the native Linux system without any logging system running.
The results are shown in Fig. 10. Observe that ProTracer
has less than 3.5% run-time overhead for all these programs,
whereas the overhead of the Linux Audit system is 7-8 times
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C. Attack Investigation Cases

In this section, we use a number of attack cases to show that
the causal graphs generated by ProTracer during attack analysis
are smaller than those by BEEP, but equally informative,
and the time taken to generate the graphs is much less. We
reproduce a few realistic attack scenarios for our experiment.
With each scenario, we perform two what-provenance queries
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to understand the sources and the ramifications of the attacks,
and also the how-provenance query to understand the attack
path (Section I). We compare the query results by BEEP and
ProTracer, and also cross-check with our prior knowledge. To
emulate real-world attack scenarios, each experiment lasted for
a few hours with the attack performed in the middle.

The first case is a backdoor attack. The attacker detected
that the running FTP server was ProFTPD-1.3.3c, which had
a backdoor command [3]. He compromised the server, and
was able to get a bash shell. He then downloaded a backdoor
program using wget, and started this backdoor to get permanent
access. A few days later, the administrator got a warning that
the FTP server had a backdoor, and decided to check if the
backdoor had been exploited. If so, what damages have been
inflicted.

The second scenario is information theft [27]. An employee
had a under-the-table deal with one competitor of his own
company: he copied some information from the company, and
leaked it to the competitor by pasting it to a public page
via vim. When the company found that the information was
leaked, they should be able to pair the file that contained the
information with the web page that leaked the information,
among thousands of files. ProTracer shall also allow them to
prove that the attacker leaked it among all the other employees
that have the access to the file.

The third scenario is illegal storage [16]. One of the server
administrators wanted to store some illegal files on a server.
However, he did not want the files to be in his own directory.
Instead he created a directory under another user’s home
directory, and downloaded the illegal files to the directory. He
replaced the 1s program to hide the existence of this directory.
When the files were eventually found, the victim user was
considered a suspect because of the presence of those files in
his/her directory. The investigator should be able to identify
that the administrator was the one that committed the crime.
Note here we assume that the administrator cannot tamper with
the log file generated by ProTracer.

The forth scenario is cheating student [4]. An instructor’s
password was stolen by a student. The student downloaded a
file containing midterm scores from Apache, and uploaded a
modified version. The instructor noticed that the average score
became higher, and started to suspect someone had modified
the file. Luckily, students used static IP addresses on campus
and off-campus IPs were forbidden to connect to the server.
So finding the IP from which the current file was uploaded
would help identify the student. Moreover, the administrator
should be able to find other suspicious activities of the student.
In our case, the student also downloaded a few files containing
answers to future quizzes.

The fifth is phishing email [2] that was discussed in
Section II.

Parts of the results are shown in Table III. The second
column shows the experiment duration. The next three columns
show the size of the logs by different systems. Then we show
the time it takes to perform the queries. The last two columns
show if BEEP and ProTracer produce matched results for the
two what-provenance queries (i.e., the backward query for
attack sources and the forward query for attack ramifications).
For the first scenario, the backward query is not applicable.



Scenario

Log file size(KB)

| Run time(s) I

Tnvestigation |
|

Duration | BEEP | LogGC [ ProTracer | BEEP [ ProTracer | Backward [ Forward

Backdoor attack 3h54min 832,753 174,693 79,834 74 11 - Match
Information theft 4h22min 587,494 94,759 13,938 39 5 Match Match
Illegal storage 2h58min 369,585 63,375 10,864 32 5 Match Match
Cheating student 1h17min 179,748 29,485 9,385 17 3 Match Match
Phishing email 4h36min | 975,753 183,795 82,343 64 8 Match Match

TABLE III: Attack scenarios. Backward means backward what-provenance query; and forward means forward query; match means ProTracer

is able to precisely and concisely uncover the attack path.

Observe that ProTracer produces much smaller logs and the
query processing time is much shorter. The query results
show no qualitative differences and precisely disclose the
provenance.

[ Scenario [ #source [ #process | #file | #nodes |
Backdoor 33/33 23/23 37/66 580/128
Infor theft 171 4/4 21/36 148/82

Illegal storage 24/24 6/6 56/72 388/208
Student hacker 2/2 2/2 67/85 432/226
Phishing email 5/5 8/8 12/12 864/305

TABLE IV: Causal graph comparison (BEEP/ProTracer).

To further compare the quality of the query results. We
compare the causal graphs generated by BEEP and ProTracer
in answering the forward queries. The results are shown in
Table IV, which shows the number of taint sources, the number
of processes (i.e. the internal nodes along the attack path), the
number of files affected by the attacks, and the number of
nodes in the graphs. Note that LogGC would produce the same
graphs as BEEP. Observe that the two systems produce the
same set of taint sources and processes. The differences in the
files are due to the fact that BEEP does not log file accesses in
the start and the end phases (e.g. loaded libraries). In this sense,
we argue that the ProTracer-induced graphs are more complete.
Finally, the ProTracer-induced graphs are much smaller than
graphs generated by BEEP, reducing the human inspection
efforts.

To acquire an intuitive understanding of the differences
between ProTracer graphs and BEEP graphs, we present parts
of the graphs by BEEP and ProTracer for the forward query
in the backdoor attack case. The query aims to find all the
reachable items from the external IPs connected to the FTP
server. There are three connections. The one from a.a.a.a
downloaded and uploaded a file, and exploited the backdoor.
The one from b.b.b.b simply downloaded and uploaded a
file. The one from c.c.c.c lost its connection. Observe that
the ProTracer graph is a lot more concise and clear. This is
because using tainting, ProTracer avoids logging many events
and generating nodes for those events. For example, the box on
the bottom of the BEEP graph shows a zoom-in view of part
of the graph. It is reduced to a single node (FTP-a0) in our
graph. And our graph is still equally informative. Moreover,
the events related to c.c.c.c are precluded from our log in
the first place as the taints did not propagate to any permanent
changes.

VI. DISCUSSION
In this section, we will discuss the limitations of ProTracer.

(1) While the execution of many programs can be divided
autonomous units which are only connected through workflow
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memory dependencies, this may not hold for all programs. For
programs that do not have unit structure (i.e., does not have
event handling loops), ProTracer treats the entire execution as
a unit, which may cause dependence explosion.

(2) Similar to BEEP [27], ProTracer relies on training runs
to identify unit loops and workflow dependencies. However,
the training may not be complete. If unit loops cannot be
properly identified, ProTracer treats the entire execution as a
unit. Once a unit loop is identified, the corresponding workflow
dependencies can be identified as they rarely change [27]. In
theory, however, ProTracer may miss such dependencies hence
the corresponding memory accesses are not instrumented,
leading to broken causal paths.

(3) Just like most audit logging systems, ProTracer requires
that the kernel and the user space daemon are not compro-
mised. This limitation can be mitigated by porting ProTracer
to a hypervisor. Furthermore, if a system is clean to begin with
and an attacker successfully subverts the system at a later time,
the initial subversion will be accurately captured by ProTracer.
But the log entries after the system’s subversion cannot be
trusted.

(4) Similar to most logging systems, ProTracer excels at
capturing provenance through benign and commonly used
applications, such as browsers and editors, as many attacks
leverage these applications. In contrast, malware usually makes
use of various methods to protect themselves such as obfus-
cation and self-modification, which may create trouble for
ProTracer’s analysis. As a result, ProTracer usually treats
malware execution as a single unit. We argue that this is
reasonable because all malware actions are — by definition —
of interest (instead of noise) to attack investigation.

VII. RELATED WORK

System logging: Lots of works [9], [10], [15], [16], [21],
[24], [26], [29], [34], [35], [35], [36], [52] have been done in
tracking provenance using system-level audit logs. However,
many of them suffer from dependence explosion and have
high overhead. BEEP [27] and LogGC [28] are the most
closely related work. ProTracer uses similar unit partitioning to
avoid dependence explosion. Compared to BEEP and LogGC,
ProTracer has much lower space and run-time overhead, due
to the new infrastructure and the integration of tainting and
logging. The graphs by ProTracer are also much more concise.
Some of these techniques [34]-[36] provide high performance.
However, they do not perform any on-the-fly reduction but
rather simply store the whole traces. They may also be
susceptible to dependence explosion.
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Fig. 11: Part of the graphs generated by BEEP and ProTracer for the backdoor case.

Dynamic information flow tracking and tainting: Tainting
and dynamic information flow tracking [12]-[14], [20], [23],
[33], [42], [47]-[50] have been studied from different aspects
(e.g., file system, kernel object level, network flow) on dif-
ferent platforms (e.g., Linux, Android) including some new
operating system prototypes like Asbestos [12] or HiStar [49]
to precisely trace provenance. They can trace provenance with
high precision. But their run-time overhead tends to be on the
high end, due to the heavy-weight instrumentation. ProTracer
borrows the basic concept of tainting, optimizes it at the
unit level to avoid the heavy-weight instrumentation used in
existing approaches. Moreover, tainting alone cannot answer
how-queries.

Log storage and presentation: Provenance data can be rep-
resented as graphs, researchers have done a lot of work [44]—
[46] on reducing the size of these graphs by borrowing ideas
from Web graph compression and dictionary based encoding.
In [6], researchers leverage Mandatory Access Control (MAC)
policies to reduce the storage cost of provenance based on
the Hi-Fi [36] system. We envision such policies can also be
adopted in ProTracer to achieve more sophisticated reduction.
G? [18] stores logs in databases, and provides execution graphs
that can be analyzed using LINQ queries or user-defined
programs. However, it depends on printed messages by the
applications. Some techniques [9], [28] try to reduce events
offline. Since ProTracer performs online reduction, the whole
trace is not visible to ProTracer. Some reduction that is easy for
offline analysis cannot be applied online. In other words, these
offline reduction techniques are complementary to ProTracer.

Log integrity: In [19], researchers proposed a real-time
server/client audit model. The client sends integrity-assured
log to the server side for post-mortem detection of infections.

ProTracer can provide pre-analyzed logs with small size, which
help [19] gain more accurate results and better performance
with lower network traffic. In [43], researchers proposed a
primitive that provides the integrity of execution trace. It works
on instruction-level execution traces. The same idea can be
applied in ProTracer to guarantee the integrity of the log and
provide better attack resilience. Recently in [7], researchers
propose a novel generic framework for the development of
provenance-aware systems based on LSM to secure such
systems. Other researchers also try to enhance the storage
system to provide the integrity of the provenance data. For
example, [41] suggests using an isolated versioning system —
working at the disk level — to store provenance; [38] develops
a storage system that allows repetitive reads but only a single
write to guarantee data integrity.

VIII. CONCLUSION

We develop ProTracer, a cost-effective provenance tracing
system that features the capabilities of alternating between
logging and unit-level taint propagation, and event process-
ing through a lightweight kernel module and a sophisticated
concurrent user space daemon. Our evaluation results show
that ProTracer substantially improves the state-of-the-art. In
our experiments, it only generates 13MB audit log per day,
and 0.84GB(Server)/2.32GB(Client) in 3 months with less than
7% overhead, while the generated logs do not lose any attack-
related information.
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