
Time-Based CAN Intrusion Detection Benchmark

Deborah H. Blevins∗†, Pablo Moriano∗‡, Robert A. Bridges‡, Miki E. Verma‡

Michael D. Iannacone‡, Samuel C Hollifield‡
†University of Kentucky, ‡Oak Ridge National Laboratory

deborah.blevins@uky.edu, {moriano, bridgesra, vermake, iannaconemd, hollifieldsc}@ornl.gov

Abstract—Modern vehicles are complex cyber-physical sys-
tems made of hundreds of electronic control units (ECUs)
that communicate over controller area networks (CANs). This
inherited complexity has expanded the CAN attack surface
which is vulnerable to message injection attacks. These injections
change the overall timing characteristics of messages on the
bus, and thus, to detect these malicious messages, time-based
intrusion detection systems (IDSs) have been proposed. However,
time-based IDSs are usually trained and tested on low-fidelity
datasets with unrealistic, labeled attacks. This makes difficult
the task of evaluating, comparing, and validating IDSs. Here
we detail and benchmark four time-based IDSs against the
newly published ROAD dataset, the first open CAN IDS dataset
with real (non-simulated) stealthy attacks with physically verified
effects. We found that methods that perform hypothesis testing
by explicitly estimating message timing distributions have lower
performance than methods that seek anomalies in a distribution-
related statistic. In particular, these “distribution-agnostic” based
methods outperform “distribution-based” methods by at least
55% in area under the precision-recall curve (AUC-PR). Our
results expand the body of knowledge of CAN time-based IDSs
by providing details of these methods and reporting their results
when tested on datasets with real advanced attacks. Finally,
we develop an after-market plug-in detector using lightweight
hardware, which can be used to deploy the best performing IDS
method on nearly any vehicle.

I. INTRODUCTION

Modern vehicles are commonly drive-by-wire. That means
that the states of vehicle subsystems are constantly being
updated through broadcast messages between small dedicated
computers called electronic control units (ECUs). With the
increasing connectivity between ECUs, inherent security risks
are becoming evident. Controller Area Network (CAN) is
the default protocol used in the automotive industry [3]. It
reduces wiring complexity by allowing ECUs to communicate
on a common channel or bus with a standard protocol. Due
to the continuously growing attack surface and the lack of
authentication and lack of encryption, CAN is one of the main

means by which adversaries can attack vehicles.
Vehicle complexity increases the attack surface by allowing

the execution of (remote) attacks that have been shown to be
life threatening. Examples include the injection of malicious
messages through cellular networks with the purpose of taking
control of targeted vehicles [5, 17] and the demonstrated
attacks by Miller and Valasek causing unintended acceleration,
deactivation of vehicles’ brakes, as well as turning the steering
wheel [14, 15]. In addition to these remote attacks, direct
access to the CAN bus is generally easy to obtain, and
for research purposes, most CAN attacks are administered
via adding a node (ECU) through a the standard on-board
diagnostic (OBD) II port.

A. Preliminaries
CAN messages or frames have two main parts: an arbitra-

tion ID (AID), typically composed of 11 bits, and a data field,
composed of up to 64 bits. The AID functions as a label for the
frame and serves to determine, by a process called arbitration,
which message is received by the CAN bus when messages
are transmitted simultaneously. The data communicates the
current state of a vehicle system—for example, the anti-lock
braking system. Commonly, messages with the same AID are
sent regularly—most AIDs occur at their fixed frequency with
minor aberrations—and often with redundant data.

CAN attacks have been classified using a three-tiered
taxonomy: fabrication, suspension, and masquerade attacks [6].
Here we focus on fabrication attacks that, by definition, add a
node (ECU) to the CAN bus and transmits messages with the
intention of overloading the bus or overwriting messages to
manipulate vehicle functionality. While these are the simplest
attacks to execute, their effect on vehicles has been repeatedly
proven [16, 23]. Notably, adding messages to the bus changes
the time gap between subsequent messages, which leads to our
focus—intrusion detection systems (IDSs) targeting fabrication
attacks via identifying message timing anomalies.

Due to the redundancy of CAN messages, to “overwrite” a
particular AID’s message in a fabrication attack (Targeted ID
Attack), an attacker must either broadcast messages at a rate
faster than the true message (flooding delivery) or directly after
the true message with the target ID is sent (flam delivery) [25].
A targeted ID attack using flam delivery is the most stealthy
kind of fabrication attack, as the resulting timing perturbation
is relatively minor, and thus provide the most difficult fabri-
cation attack testing for time-based detection methods. Denial
of service (DOS) and fuzzing attacks use flooding delivery
with the goal of overloading the bus rather than targeting a
particular ID, resulting in less stealthy fabrication attacks.

This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The US government 
retains and the publisher, by accepting the article for publication, acknowledges that 
the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to 
publish or reproduce the published form of this manuscript, or allow others to do 
so, for US government purposes. DOE will provide public access to these results 
of federally sponsored research in accordance with the DOE Public Access Plan 
(http://energy.gov/downloads/doe-public-access-plan).

∗Deborah H. Blevins and Pablo Moriano, placed in alphabetical order, 
contributed equally to this work.

Workshop on Automotive and Autonomous Vehicle Security (AutoSec) 2021 
25 February 2021, Virtual
ISBN 1-891562-68-1
https://dx.doi.org/10.14722/autosec.2021.23013
www.ndss-symposium.org



B. Related Work
After early vehicle security work of Hoppe et al. [12],

who note that monitoring for increased message frequency
poses a potentially effective CAN IDS, initial research began
to prove the concept that fabrication attacks can be accurately
identified via message timing anomalies. Following works
considered simple heuristics based on the counts of messages
in a time window [20] or the average observed time gap
between messages [8, 16, 23]. Later works began applying
more sophisticated statistical machinery to the problem of
unsupervised fabrication attack detection via timing-based
methods: Tomlinson et al. [24] consider two online methods
and one pre-trained unsupervised method, all based on the
mean inter-message time gap; Hamada et al. [9] train Gaussian
mixture models to identify time gaps in the future that occur
with low probability; Olufowobi et al. [18] create a complex
simulation for message timing from CPU scheduling research,
which unfortunately exhibits low precision (many false alerts);
Kuwahara et al. [13] create vectors of message counts in a
time window, then use a z-score on nearest neighbor distance
to find anomalous windows; Han et al. [10] test survival
analysis techniques; Olufowobi et al. [19] use CUMSUM
change detection; Young et al. [27] apply the Fast Fourier
Transform (FFT) to a square wave representation of messages
and find anomalies in the frequency domain representation;
Avatefipour et al. [2] test a combination of a modified bat
algorithm with a one-class support vector machine (OCSVM).

Noteworthy takeaways from the survey above include:

T1 Very simple methods, e.g. see Moore et al. [16] report
strong detection results as do more sophisticated
methods, e.g., Olufowobi et al. [19].

T2 Methods that process a time window of data can,
depending on implementation, introduce a lag in
detection (of up to the length of the time window)
and an inability to distinguish specific inter-message
time gaps that are anomalous [9, 20].

T3 Few of ∼20 proposed methods are evaluated on real
(non-simulated), public data, as appropriate public
CAN datasets were not available at the time of the
earlier research, although a few later works (e.g.,
[13, 19]) use now-public datasets.

T4 Most of the works fail to cite many directly compa-
rable previous works.

C. Motivation & Contributions
The newly released ROAD Dataset [25] provides real

(non-simulated), physically-verified, CAN data with labeled
fabrication attacks, in particular many using the stealthy flam
delivery. In light of T1 and T3, we leverage this opportunity to
benchmark some intuitive, straightforward approaches to time-
based detection of fabrication attacks. The methods chosen aim
to identify and compare the statistical concepts foundational
to time-based CAN IDS methods on a high fidelity dataset. To
the best of our knowledge, an analysis benchmarking several
different time-based IDS methods has not yet been thoroughly
performed.

The contributions of this research are summarized as fol-
lows. In light of T4, we provide a thorough survey of the
previous time-based CAN IDS research targeting fabrication
attacks. Second, we provide definitions of four different time-
based IDSs, stating the conditions needed to raise alarms in
each of the methods. We implement the detailed methods,
enabling their further deployment and comparison. Third, we
test the implemented methods on a publicly available CAN
IDS dataset, ROAD [25]. In contrast with previous work in
the area, the test set includes many fabrication attacks that
were administered to a real vehicle’s CAN with effect to the
vehicle physically verified; notably, this dataset is publicly
available and does not contain simulated data. Fourth, we
compare the proposed time-based IDS methods based on their
detection ability. Lastly, we discuss implementation details and
the operation of the best performing method in an OBD II
plugin. In light of T2, this includes detection latency analysis
of our Binning detector. We provide access to the analysis
scripts for replicability and reproducibility purposes.1

II. METHODS

In this section, we define the threat model and dataset
used throughout the paper (Sec. II-A), the detection methods
that we compared (Sec. II-B), an analysis of detection latency
(Sec. II-C), and the accuracy metrics we used for comparison
(Sec. II-D).

A. Threat Model & Dataset
Cho and Shin [6] provide a widely known CAN attack

terminology. Specifically, they used the term weakly compro-
mised ECU to denote an ECU that an adversary is able to
silence by suspending message transmission. Conversely, they
used the term fully compromised ECU for an ECU over which
an adversary has complete control, including the ability to send
fabricated messages and gain memory access.

In this work, we used the ROAD dataset [25] that involve
a fully compromised ECU introduced to the CAN bus using
the OBD-II port. The ROAD Dataset is the first open dataset
with real (non-simulated), stealthy (using flam delivery) fab-
rication attacks that have physically verified effects on the
vehicle. These characteristics make the ROAD dataset ideal
for benchmarking time-based IDS methods.

The ROAD dataset consists of 12 ambient captures (log
files) containing about three hours of ambient (non-attack)
data and 33 attack captures that last in total about 30 minutes.
Table I lists contents of attacks and logs in the ROAD dataset,
and indicates the subset of logs used in this paper. The
ROAD dataset contains several types of attacks (see Table I,
bottom): (1) fabrication attacks, including fuzzing attacks and
several different targeted ID attacks using flam delivery; (2)
masquerade attacks and (3) an advanced “Accelerator” attack.
Note that (2) and (3) do not alter timing characteristics and are
thus out of scope for this paper. For thorough testing, several
of the attacks are run and logged more than once. The ROAD
data was obfuscated to ensure anonymity of the vehicle while
preserving aspects that are needed for testing IDS methods. For
more details on the data collection and obfuscation procedure,
refer to the work by Verma et al. [25].

1Auxiliary material can be found at https://github.com/pmoriano/can-time-
based-ids-benchmark.

2

https://github.com/pmoriano/can-time-based-ids-benchmark
https://github.com/pmoriano/can-time-based-ids-benchmark


TABLE I: Logs in ROAD CAN Intrusion Detection Dataset.
Description # Logs Used Duration (min)

Tr
ai

ni
ng Dynamometer Various Ambient 10 3 108.2

Road Various Ambient 2 7 70.6
Total 12 10 178.8

Te
st

in
g

Accelerator Attack (In Drive) 2 7 2.7
Accelerator Attack (In Reverse) 2 7 3.2
Correlated Signal Fabrication Attack 3 3 1.3
Correlated Signal Masquerade Attack 3 7 1.3
Fuzzing Fabrication Attack 3 3 0.7
Max Engine Coolant Temp Fabrication Attack 1 3 0.4
Max Engine Coolant Temp Masquerade Attack 1 7 0.4
Max Speedometer Fabrication Attack 3 3 3.9
Max Speedometer Masquerade Attack 3 7 3.9
Reverse Light Off Fabrication Attack 3 3 2.1
Reverse Light Off Masquerade Attack 3 7 2.1
Reverse Light On Fabrication Attack 3 3 3.2
Reverse Light On Masquerade Attack 3 7 3.2
Total 33 16 28.4

Below we describe the specifics of the data we used from
the ROAD dataset for the training and testing phases.

1) Training: Training or ambient data in the ROAD dataset
was collected when the vehicle was on the dynamometer or
on the road while performing diverse, potentially unusual but
benign, driving activities (e.g., unbuckling seatbelts or opening
doors while driving). In this work, for training, we used all 10
data logs that were generated on the dynamometer only (see
Table I, top). We select only these ambient dynamometer logs
since all logs containing attacks, which make up our test data,
were collected on a dynamometer.

The time-based IDS methods that we benchmark in this
work rely on analyzing inter-message time distributions of each
AID. Thus, characterizing inter-message time distributions is
an important step during the training phase. Fig. 1 shows the
inter-message time distribution of AID 0xD0 (a targeted AID
in one of the attacks). We annotate the figure with the values
of the mean µ, standard deviation σ, minimum value min, and
maximum value max. Fig. 1(a) shows the distribution without
removing outliers in training. We notice that although most
inter-message times are short (contained in the bar with almost
six orders of magnitude), there are a few outliers corresponding
to events transmitted at asynchronous rates (more than 50
seconds). Given that these outliers have the potential to skew
the inter-message time distributions, we test results with and
without outliers.

To remove outliers, we used the Minimum Covariant
Determinant (MCD) method [22]. MCD is an estimator of
multivariate location (mean) and scatter (covariance) that is
robust to outliers in the data and for which a fast algorithm
is available. MCD serves as a convenient and efficient tool
for identifying and omitting outliers while fitting a Gaussian
to the remaining inliers. For removing outliers, we used the
EllipticEnvelope class in SciKit-Learn [21]. We set the
contamination argument to 0.01% to control the proportion of
expected outliers. Fig. 1 shows the inter-message time distribu-
tion (a) with and (b) without outliers in training. Clearly data
in (a) (with outliers) is non-Gaussian; in (b) (without outliers),
the Gaussian is plotted in black over the data histogram.

We observe that removing the outliers significantly shrinks
the domain of the random variable (σ = 0.352,max =
179.789 with outliers versus σ = 0.001,max = 0.019
without). By removing outliers, we believe we can ensure a
better characterization of the inter-message time distribution,
and thereby obtain a better detector. We test this hypothesis
by comparing results with and without outliers in Sec. III.

0 50 100 150
10 7

10 6

10 5

10 4

10 3

10 2

10 1

PD
F 

(L
og

sc
al

e)

max = 179.789
min = 0.004

= 0.011
= 0.352

(a)

0.005 0.010 0.015

10 5

10 3

10 1

101

max = 0.019
min = 0.004

= 0.010
= 0.001

(b)

Inter-arrival time (s)
Fig. 1: Probability Density Function (logscale) of inter-message time
distributions for AID 0xD0 in the training dataset (a) with outliers
and (b) without outliers and with the Gaussian fit of the PDF shown
in black. Note that without removing outliers, data is not Gaussian.

2) Testing: We used all 16 available log files for testing
time-based detectors (namely, those containing fabrication
attacks): the fuzzing attacks and the five different fabrication
targeted ID attacks (see Table I, bottom). We aggregated all
of these logs for evaluating the performance of the time-based
IDS methods. Note that we did not remove outliers in the
testing dataset. Importantly, among the 16 logs files that we
used for testing, there was a total of 1,588,263 messages, of
which 61,516 were attacks. This means that the proportion
of positive samples is about 3.9%, which makes the testing
dataset highly imbalanced. We revisit the imbalanced effect of
the testing dataset in Sec. III.

B. Detection Methods
We tested four detection methods that exploit the timing

regularities of CAN messages: Mean Inter-Message Time
(Sec. II-B1), Binning (Sec. II-B2), Fitting a Gaussian Dis-
tribution (Sec. II-B3), and Kernel Density Estimation (KDE)
(Sec. II-B4). While the first two rely on heuristics based on
the inter-message times, the latter two follow previous anomaly
detection works by fitting a continuous distribution to the inter-
message times and detecting time gaps with low p-value [4].
We employ the two-sided p-value (of a sample x given a
probability distribution f ), denoted by pvf , where Pf is the
probability with respect to f as:

pvf (x) :=

∫
{t:f(t)≤f(x)}

f dt = Pf ({t : f(t) ≤ f(x)}) . (1)

All methods except for Binning use a two-step process for
determining if a message is malicious. Step (1) Compari-
son: this step identifies whether a message is suspicious by
comparing it to a threshold identified during training. Step
(2) Check for sufficiency: this step determines whether the
frames identified as suspicious in Step (1) are sufficiently
anomalous to warrant an alert. This is done by checking if
suspicious inter-message times occur repeatedly; the intuition
is that to manifest physical changes, fabrication attacks must
have repeated injections to continually overwrite the ambient
messages. If sufficiency is confirmed, the messages are marked
as malicious.

In this section, let XAID be the set of inter-message times
for a particular AID in the ROAD dataset and let x be an
arbitrary inter-message time in XAID. Again, µ denotes the
average inter-message time for this AID. We run each method

3



using a range of detection thresholds α, where α is defined
below for each.

1) Mean Inter-Message Time (Mean): The first method
uses the empirical mean µ calculated during training and a
given threshold α ∈ [0, 1]. (1) Comparison: consider if inter-
message time x ≤ αµ. (2) Check for sufficiency: if x ≤ αµ
holds for three out of the last six inter-message times, the
frame is labeled malicious. We compute results for thresholds
αi = i/18 for i = 1, . . . , 18. We use 18 thresholds to be
consistent with the distribution-based methods (II-B3, II-B4).

2) Binning: The second method considers the number of
messages transmitted during a certain window of time. We
let αi = (2 + i)/2 for i = 1, . . . , 18. In order to identify
the appropriate threshold, for each αi, we labeled a message
malicious when the last six frames arrived in less than αiµ
seconds. As intuition, note that in a time window of length
αµ we expect α messages to occur. Hence for α < 6, this
method will alert when extra messages are occurring.

3) Fitting a Gaussian Distribution (Gaussian): The third
method fits a Gaussian distribution, fG, to the inter-message
times x (regardless of the shape of the data) and com-
putes the two-sided p-value defined in Eq. 1. Let S :=
{0.001, . . . , 0.009} ∪ {0.01, . . . , 0.09}. Detection was run for
each α ∈ S as follows. (1) Comparison: for each x ∈ XAID,
compute pvfG(x) (as in Eq. 1). (2) Check for sufficiency: if
pvfG(x) ≤ α for three consecutive inter-message times, the
frame is labeled malicious.

4) Kernel Density Estimation (KDE): The final method
uses a KDE using a Gaussian kernel to establish a probability
density function, fKDE, of the inter-message time data. Steps
for detection follow the Gaussian method’s (1) and (2) with
pvfKDE instead of pvfG . Detection results are computed for each
α ∈ S as in the Gaussian method (II-B3).
C. Detection Latency

For all methods except Binning, each frame is scored and
alerted; hence, latency is simply the computational time for
the detection. Note that the Binning method, by design does
not compute counts for moving time windows, but instead
stores the previous five message times and asks if the next
message occurs too soon, specifically if the last six messages
occurred in less than αµs. Hence, detection latency depends on
α. Here we suppose that there is at least one illegitimate frame
sent between each pair of ambient frames. If α ≥ 5 detection
is immediate (simply computation time for the algorithm) as
the previous five message (all legitimate) will require ∼4µ s;
thus, the time gap from the first initial illegitimate frame to
the sixth previous will be under 5µ. Similarly, the time gap
from the second illegitimate frame to the sixth previous is at
most 4µ, meaning for α ∈ [4, 5) detection latency is 2µ plus
computational time. Finally, the time gap from the third or any
subsequent illegitimate frame to the sixth previous message
is at most 3µ. This means our detection latency will be at
most 3µ plus computation time for α < 4. Note that detection
accuracy may vary greatly among different values of α. To
put this in context, most AID frequencies are on the order of
10Hz to 100Hz, so the latency is a fraction of a second for all
thresholds α.

D. Detection Ability Comparison
The basis for the comparison between the time-based IDS

methods is based on counting the number of CAN messages

that were labeled as true positives (TP), false positives (FP),
false negatives (FN), and true negatives (TN). Several im-
portant classification metrics are based on these numbers:
Precision, defined as TP

TP+FP , gives the likelihood that a
detected message is an attack; Recall, defined as TP

TP+FN ,
gives the likelihood that an attack is detected. Since higher
precision often comes at the price of higher recall (and vice
versa), it is important to consider a balance of both metrics,
and the standard balanced metric is the F1 score, defined as
2× precision×recall

precision+recall .
To compare the performance of these time-based methods

over a range of detection thresholds (α), we consider the
Precision-Recall (PR) curve, which plots precision against the
recall at different thresholds. We choose to use the PR curve
rather than the more commonly used ROC curve, which is less
suited to imbalanced datasets [7] (recall that the proportion of
attack messages, i.e., positive samples, is about 3.9%). This
PR curve illustrates how the accuracy of a method changes at
different performance thresholds, and the optimal threshold in
terms of F1 score will generally appear towards the furthest
top-right point of the curve. In our evaluation, we determine
the optimal threshold to be the threshold that results in the
highest F1 score.

This curve is also provides an important metric for eval-
uating a methods head-to-head independent of a specific
threshold, namely, the area under the PR curve (AUC-PR),
where a higher percentage indicates better overall performance.
Note that is is important to consider this threshold-independent
metric, since a true unsupervised method cannot consult the
test data to determine an optimal threshold. Note that the
baseline of the PR curve is the proportion of positive samples

TP+FN
TP+FN+TN+FP .

III. RESULTS

For each method, the PR curve is shown in Fig. 2 and the
AUC-PR is given in Table II.

We first consider the method performance independent of
a detection threshold. We report the performance comparison
between the four methods across every threshold using AUC-
PR in Table II, and highlight the method with best performance
in bold. Overall, we find that methods that rely heavily on
the distribution (i.e., Gaussian and KDE methods) tend to
perform much worse and be significantly affected by outliers,
as opposed to methods that do not have these distributional
assumptions (i.e., Mean and Binning methods). With outliers
present, the AUC-PR for both the Gaussian and KDE method
are near 0, and while they perform significantly better when
these outliers are removed from the training set, both still have
a very low AUC-PR of under 15%. Removing outliers also
makes the performance of the Mean method slightly better
(from 68.90% to 69.05%) but interestingly, it worsens the
performance of the Binning method (from 87.63% to 82.18%).
The Binning method has the best performance both with and
without outliers in training, achieving over 82% in both cases.

We next consider the performance of the methods at
different threshold values. This is done illustrate how these
thresholds affect the methods and determine the optimal
threshold and resulting F1 score for each. Fig. 2 gives a more
detailed illustration of the conclusions given above: regardless
of the presence of outliers, both Gaussian and KDE methods
tend to perform poorly at all detection thresholds, while the

4



TABLE II: AUC-PR comparison with and without outliers in training.
The Binning method (in bold), is the best performing method in both
cases.

Method With Outliers Without Outliers
Mean 68.90% 69.05%
Binning 87.63% 82.18%
Gaussian 0.00% 8.99%
KDE 0.02% 13.88%

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

Baseline: 0.039

(a)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Baseline: 0.039

(b)

Mean Binning Gaussian KDE

Recall
Fig. 2: Performance comparison based on PRC. (a) with (b) without
outliers. The Binning method performs best overall.

Mean and Binning methods perform much better, particularly
at certain thresholds (indicated by the blue and orange points
near (1.00, 1.00)).

For the distribution-agnostic methods, we found that the
optimal threshold and resulting optimal F1 score were essen-
tially the same with or without outliers present in training. We
found that the optimal threshold value for the Mean method
is α = 0.44, At this threshold, the value of the F1 score is
∼98.6% (precision is 97.6% and recall is 99.6%). This means
that reporting (as anomalies) messages that are less than 44%
of the expected inter-arrival time mean (per AID) produces the
best tradeoff between precision and recall. We also found that
for the binning method, the optimal value for the threshold α
(for this method, the window length) is 3.5. At this threshold,
the F1 score is ∼99.0% (precision is 98.6% and recall is
99.2%). This means that reporting messages (as anomalies)
that do not resemble the expected number of messages in a
window of length of 3.5 produces the best tradeoff between
precision and recall.

For the distribution-based methods, we consider only the
case in which outliers are removed, since these methods are
essentially useless without this preprocessing step. The optimal
threshold (the p-value) for the Gaussian and KDE methods
was 0.09. At this value the F1 score achieved is 25.99% and
27.79%, respectively.

A. OBD-II Plugin Prototype
To prove the proposed detector is a viable vehicle-agnostic

detector able to run on small edge computing devices effi-
ciently, we implemented the the best performing method, i.e.,
Binning method (Sec II-B2), on an OBD-II plugin. We devised
an edge computing device using a Raspberry Pi 3B+ with
Raspbian Buster providing 1GB of RAM, a 1.4GHz ARMv8
processor, and Python support coupled with an interface board,
Industrial Berry’s CANBerry Dual 2.1 [1] to facilitate CAN
communication. Once attached to the CAN bus (plugged into
an OBD II of a running vehicle), the device runs an algorithm
to identify the CAN’s pre-configured bitrate along with other
metadata, e.g., the vehicle identification number (VIN). The

device then automatically collects CAN data from the vehicle
and trains the parameters for each AID’s detector. At this point
the driver would ideally exercise as much of the vehicle’s
functionality as possible in order to determine the timing
characteristics of the most possible AIDs. Once trained, the
device can deploy the time-based detectors in real time and
receive alerts visually via LEDs, with metadata and logs of the
alerts stored on the prototype. The stages of the process are
started/stopped with a switch on the device. The implementa-
tion into hardware follow our previous work [26]. We provide
a demonstration video of the hardware running the Binning
detector on a passenger vehicle while implementing an attack
online (https://www.youtube.com/watch?v=mQxkycW0mV4).

IV. DISCUSSION

Recalling the takeaways from our survey of the related
literature, Sec. I-B, specifically, T1 (simple detectors have
garnered strong results) and T4 (few previous works use
real, public, physically-verified, high-fidelity attack datasets
for testing), we formally define, implement, comparatively
evaluate four different time-based intrusion detection system
(IDS) methods on the ROAD Dataset [25], a publicly available
CAN dataset with labeled attacks. The Mean method (II-B1)
represents the many initial works that use heuristics based
on differences from the average inter-message timing, while
the Binning method (II-B2) represents the early methods that
count messages in a time-window. As these both rely heavily
on the learned mean inter-message time, a logical next step
is to leverage also the second moment, variance, specifically,
fitting a Gaussian to training data and detecting events in the
tail (II-B3). Peeking at the training data (Fig. 1) we note
that outliers may ruin the Gaussian fit. Alternatively, one may
argue that non-Gaussian data should be fit with a more flexible
class of distributions. To this end we also tested an analogous
detector based on the very flexible kernel density estimate
(KDE) method (both with and without outliers in training) to
test this hypothesis.

Unsurprisingly considering previous works, the two simple,
distribution-agnostic (Mean, Binning) achieve strong results
(F1 scores of 0.986, 0.990, respectively). Moreover, our results
with and without outliers in the training data show the methods
are fairly robust to outliers as their results are not substantially
affected. Perhaps shockingly, the two distribution-based meth-
ods pale in comparison. Our analysis of results when fitting
these distributions to training data with and without outliers
shows that these poor detection results exhibit only minor
improvements (F1 scores of 0.260, 0.278, respectively); hence,
they are not amended by this pre-processing maneuver. Rather,
it seems that the tails of the Gaussian (and KDE, whose tails
are near identical) are insufficient to characterize these. In the
case of the Gaussian, these result suggest that considering the
inter-message time as a fraction of the mean is an informative
statistic but as a z-score is not, perhaps because the variance
is so small in these distributions. As the tails of the Gaussian
and KDE distributions are similar, this provides intuition for
the poor results of these distributional methods.

Overall, these results suggest that counting methods are
perhaps slightly better than those that consider inter-message
timing, and more dramatically, the heuristic/distribution-
agnostic methods far outperform those that explicitly seek tails
of an estimated distribution. Inspecting the testing data reveals
an artifact of flam attacks (that send one illegitimate message

5

https://www.youtube.com/watch?v=mQxkycW0mV4


just after a legitimate message); i.e., they force the attack inter-
message times to be a bi-modal distribution.

The following are some limitations of our study. First, we
do not consider CAN messages without fixed timing. Second,
the ROAD dataset only includes data from a single car. It
is clear from the research that these techniques will succeed
on a wide variety of vehicles, but specifics, e.g., the optimal
thresholds found via our test data, may or may not translate
to other vehicles. Third, as these are unsupervised methods,
how to set the threshold with no attack data is a real-world
need that we do not address. Finally, the methods we tested
are exclusively of a time-based nature and the scope of our
paper is limited to fabrication attacks. These methods are not
intended to detect attacks that do not alter message frequencies,
e.g., masquerade attacks. For detecting such anomalous event
messages, methods should also take into account changes in
the payload (e.g., see [11]).

To the best of our knowledge, the results from this research
show for the first time a systematic comparison of time-based
detection methods on an open CAN IDS dataset with verified
real-world attacks. While this may seem like a solved problem
we note that the results of the Binning and Mean detectors
(and likely most all previous works) are in fact insufficient
when put in context. Referring to the Dataset Section (II-A),
the test data was ∼12.3 minutes of driving data comprised of
∼1.6M CAN messages. With the optimal Binning detector’s
precision of 98.6%, this still produces approximately 0.014×
1.6/12.3M = 1,821 alerts per minute. In short, systematically
pushing the state of the art in this area is still needed, and
we hope this benchmark of the straightforward approaches in
the area helps. In summary, our results indicate that future
researchers may wish to focus on counting algorithms that
can increase precision at (ideally) no expense to recall, and
statistical machinery that relies on distributional estimates.

REFERENCES

[1] “CAN bus shield for raspberry with 2 can interfaces,” http://
www.industrialberry.com/canberrydual-v2-1/.

[2] O. Avatefipour, A. S. Al-Sumaiti, A. M. El-Sherbeeny, E. M.
Awwad, M. A. Elmeligy et al., “An intelligent secured frame-
work for cyberattack detection in electric vehicles can bus using
machine learning,” IEEE Access, 2019.

[3] R. Bosch et al., “CAN specification version 2.0,” Rober Bousch
GmbH, Postfach, vol. 300240, p. 72, 1991.

[4] R. A. Bridges, J. D. Jamieson, and J. W. Reed, “Setting the
threshold for high throughput detectors: A mathematical ap-
proach for ensembles of dynamic, heterogeneous, probabilistic
anomaly detectors,” in Proceedings of the IEEE International
Conference on Big Data, 2017, pp. 1071–1078.

[5] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher et al., “Comprehensive experimental
analyses of automotive attack surfaces,” in Proceeding of the
USENIX Security Symposium, 2011, pp. 447–462.

[6] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control
units for vehicle intrusion detection,” in Proceedings of the 25th
USENIX Security Symposium, 2016, pp. 911–927.

[7] J. Davis and M. Goadrich, “The relationship between precision-
recall and roc curves,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 233–240.

[8] M. Gmiden, M. H. Gmiden, and H. Trabelsi, “An intrusion
detection method for securing in-vehicle can bus,” in 2016 17th
IEEE International Conference on Sciences and Techniques of
Automatic Control and Computer Engineering, Dec 2016.

[9] Y. Hamada, M. Inoue, H. Ueda, Y. Miyashita, and Y. Hata,
“Anomaly-based intrusion detection using the density estimation

of reception cycle periods for in-vehicle networks,” SAE Int. J.
Transp. Cybersecur. Privacy, vol. 1, no. 1, pp. 39–56, May 2018.

[10] M. L. Han, B. I. Kwak, and H. K. Kim, “Anomaly intrusion
detection method for vehicular networks based on survival
analysis,” Veh. Commun., vol. 14, pp. 52–63, Oct 2018.

[11] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer,
“CANet: An unsupervised intrusion detection system for high
dimensional CAN bus data,” IEEE Access, vol. 8, 2020.

[12] T. Hoppe, S. Kiltz, and J. Dittmann, “Applying intrusion detec-
tion to automotive it early insights and remaining challenges,”
Journal of Information Assurance and Security (JIAS), vol. 4,
no. 6, pp. 226–235, 2009.

[13] T. Kuwahara, Y. Baba, H. Kashima, T. Kishikawa, J. Tsurumi
et al., “Supervised and unsupervised intrusion detection based
on can message frequencies for in-vehicle network,” Journal of
Information Processing, vol. 26, 2018.

[14] C. Miller and C. Valasek, “Remote exploitation of an unaltered
passenger vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[15] ——, “CAN message injection: OG dynamite edition,” Tech.
Rep., 2016.

[16] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and
S. J. Prowell, “Modeling inter-signal arrival times for accurate
detection of CAN bus signal injection attacks: a data-driven
approach to in-vehicle intrusion detection,” in Proceedings of
the 12th Annual Conference on Cyber and Information Security
Research, 2017.

[17] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking tesla from wireless
to CAN bus,” Briefing, Black Hat USA, vol. 25, pp. 1–16, 2017.

[18] H. Olufowobi, G. Bloom, C. Young, and J. Zambreno, “Work-in-
progress: Real-time modeling for intrusion detection in automo-
tive controller area network,” in 2018 IEEE Real-Time Systems
Symposium, Dec 2018, pp. 161–164.

[19] H. Olufowobi, U. Ezeobi, E. Muhati, G. Robinson, C. Young
et al., “Anomaly detection approach using adaptive cumulative
sum algorithm for controller area network,” in Proceedings of
the ACM Workshop on Automotive Cybersecurity, 2019, pp. 25–
30.

[20] S. Otsuka, T. Ishigooka, Y. Oishi, and K. Sasazawa, “CAN Se-
curity: Cost-Effective Intrusion Detection for Real-Time Control
Systems,” SAE Technical Paper, Tech. Rep., Apr 2014.

[21] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[22] P. J. Rousseeuw and K. V. Driessen, “A fast algorithm for
the minimum covariance determinant estimator,” Technometrics,
vol. 41, no. 3, pp. 212–223, 1999.

[23] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection
system based on the analysis of time intervals of CAN messages
for in-vehicle network,” in Proceedings of the International
Conference on Information Networking, 2016.

[24] A. Tomlinson, J. Bryans, S. A. Shaikh, and H. K. Kalutarage,
“Detection of Automotive CAN Cyber-Attacks by Identifying
Packet Timing Anomalies in Time Windows,” in Proceedings
of the 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops, 2018.

[25] M. E. Verma, M. D. Iannacone, R. A. Bridges, S. C. Hollifield,
B. Kay, and F. L. Combs, “ROAD: the real ORNL automotive
dynamometer controller area network intrusion detection dataset
(with a comprehensive CAN IDS dataset survey & guide),”
arXiv: 2012.14600 [cs], Dec 2020.

[26] M. E. Verma, R. A. Bridges, J. J. Sosnowski, S. C. Hollifield,
and M. D. Iannacone, “CAN-D: A modular four-step pipeline
for comprehensively decoding controller area network data,”
arXiv:2006.05993 [cs, eess], Jun 2020.

[27] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Au-
tomotive intrusion detection based on constant can message
frequencies across vehicle driving modes,” in Proceedings of
the ACM Workshop on Automotive Cybersecurity, 2019, pp. 9–
14.

6

http://www.industrialberry.com/canberrydual-v2-1/
http://www.industrialberry.com/canberrydual-v2-1/

	Introduction
	Preliminaries
	Related Work
	Motivation & Contributions

	Methods
	Threat Model & Dataset
	Training
	Testing

	Detection Methods
	Mean Inter-Message Time (Mean)
	Binning
	Fitting a Gaussian Distribution (Gaussian)
	Kernel Density Estimation (KDE)

	Detection Latency
	Detection Ability Comparison

	Results
	OBD-II Plugin Prototype

	Discussion

