
Int. J. Applied Cryptography, Vol. 3, No. 1, 2013 21 

Copyright © 2013 Inderscience Enterprises Ltd. 

Secure computation of functionalities based on 
Hamming distance and its application to computing 
document similarity 

Ayman Jarrous 
Department of Computer Sciences, 
University of Haifa, 
Mount Carmel, Haifa 31905, Israel 
E-mail: ayman@jarrous.net 

Benny Pinkas* 
Department of Computer Science, 
Bar Ilan University, 
Ramat-Gan 52900, Israel 
E-mail: benny@pinkas.net 
*Corresponding author 
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1 Introduction 

There are many known generic constructions of secure  
two-party and multi-party computation, most notably the 
seminal constructions of Yao (1986), Goldreich et al. (1987) 
and Ben-Or et al. (1988). The downside of generic 
constructions is that they are often less efficient than 
tailored protocols that are designed for computing specific 
functionalities. It is therefore important to identify 
functionalities that are essential for many applications, and 
design efficient secure constructions of these specific 
functionalities. This paper performs this task for a  
 

functionality denoted as ‘Hamming distance-based 
oblivious transfer’ (HDOT), for which we also demonstrate 
different interesting applications. In particular, we will 
explore the application of that functionality for computing 
similarity between documents. 

The Hamming distance between two strings is defined 
as the number of characters in which they differ. We define 
‘HDOT’, pronounced ‘h-dot’) as a protocol which allows 
two parties, a receiver 1P  which has an input w, and a 
sender 2P  which has an input w′, to securely evaluate a 
function f(·, ·) whose output is determined only by the  
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Hamming distance between w and w′ (denoted dH(w, w′)). 
More precisely, the output is defined in the following way: 
Let |w| = |w′| = ℓ, then 2P  must provide ℓ + 1 additional 
inputs Z0, …, Zℓ, and 1’sP  output is set to be Zd where  
d = dH(w, w′). In this work, we design secure protocols for 
computing HDOT in the semi-honest and malicious 
scenarios, and for inputs defined over both binary and 
arbitrary alphabets. (A semi-honest adversary is one that 
follows the instructions defined by the protocol, but may try 
to use the information that it gained during execution in 
order learn about the inputs of the other parties. A malicious 
adversary, on the other hand, may not follow the rules of the 
protocol and is thus more powerful than a semi-honest 
adversary.) The semi-honest protocols are unique in that 
they invoke oblivious transfer a number of times which is 
only logarithmic in the input length. The malicious scenario 
protocols are secure according to the full simulatability 
definition. 

On the way we define and use a new class of oblivious 
transfer protocols, ‘constrained oblivious transfer’, and 
show an implementation of a protocol from this class in the 
malicious scenario. 

In more detail, this paper contains the following results: 

• The paper presents the notion of Hamming  
distance-based oblivious transfer, HDOT, and describes 
protocols secure against semi-honest adversaries: 

1 A protocol denoted binHDOT for binary inputs w, 
w′ ∈ {0, 1}ℓ. This protocol operates by computing 
O(ℓ) homomorphic encryptions and only log ℓ 
invocations of 1-out-of-2 oblivious transfer. 

2 A general HDOT protocol, for w, w′ ∈ Σℓ, where Σ 
can be arbitrary. This protocol uses binHDOT as a 
building block. 

• A binHDOT protocol secure against malicious 
adversaries (in the stand-alone setting). The protocol 
uses two primitives that must also be secure against 
malicious adversaries: committed oblivious transfer 
with constant difference (COTCD), and oblivious 
polynomial evaluation (OPE). We give a construction 
for the first primitive, which is an example of a new 
class of OT protocols, constrained OT, which we 
define. The latter primitive is based on a construction  
of Hazay and Lindell (2008). 

The security of this protocol is proved according to the 
full simulatability notion defined in Canetti (2000). 
Therefore, the composition theorem of Canetti (2000) 
implies that the resulting protocol can be used as a 
building-block for more complex protocols, and 
security of those latter protocols can be analysed 
assuming that this building-block protocol is 
implemented by a trusted oracle (Canetti, 2000; 
Goldreich, 2004).1 

 

• Applications of HDOT. These include several 
straightforward applications, such as computing the 
Hamming distance between strings, or transferring one 
of two words based on whether the two input strings are 
equal or not (a functionality we denote as EQ, for 
equality-based transfer). Another application is a 
variant of symmetric private information retrieval 
(SPIR) which we denote as m-point-SPIR, and which 
can be used when the server’s database contains N 
items, of which at most m = o(N / logN) are unique and 
the other N – m items have some default value. The 
receiver does not know whether it learns a unique or a 
default value. We show a protocol which is based on 
HDOT and can be reduced to oblivious transfer alone, 
which computes this functionality more efficiently than 
known PIR protocols. m-point-SPIR can be used for 
other applications, as described in Section 6. 

• A specific application that we describe in more  
detail checks whether two documents are similar.  
This application is novel in that it adds privacy to  
state-of-the-art document similarity algorithms  
of Broder et al. (1997). We designed and also 
implemented secure protocols for this task and ran 
experiments which demonstrate their efficiency.  
These protocols work in the semi-honest setting. 

2 Preliminaries 

We use the standard definitions of secure two-party 
computation in the stand-alone setting [see Goldreich’s 
(2004) book (Chapter 7)]. Security of protocols is analysed 
by comparing what an adversary can do in a real execution 
of the protocol to what it can do in an ideal scenario that is 
secure by definition. The ideal scenario involves an 
incorruptible trusted third party (TTP) which receives the 
inputs of the parties, computes the desired functionality, and 
returns to each party its respective output. A protocol is 
secure if any adversary which participates in the real 
protocol (where no TTP exists) can do no more harm than if 
it was involved in the above-described ideal computation. 
The exact definition appears in Goldreich (2004). 

The hybrid model. Our protocols use other secure protocols, 
such as oblivious transfer, as subprotocols. It has been 
shown in Canetti (2000) that if the subprotocols are secure 
according to the right definition (i.e., full simulatability in 
the case of the malicious adversary scenario), it suffices to 
analyse the security of the main protocol in a hybrid model. 
In this model, the parties interact with each other and have 
access to a trusted party that computes for them the 
functionalities that are implemented by the subprotocols. 
The composition theorem states that it is not required to 
analyse the execution in the real model, but rather only 
compare the execution in the hybrid model to that in the 
ideal model. 
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We remark that the composition theorem of Canetti 
(2000) holds for the case that the subprotocol executions are 
all run sequentially (and the messages of the protocol 
calling the subprotocol do not overlap with any execution). 
We also remark that if the oblivious transfer subprotocol is 
secure under parallel composition, then it is straightforward 
to extend (Canetti, 2000) so that the subprotocols may be 
run in parallel (again, as long as the messages of the 
protocol calling the subprotocol do not overlap with any 
execution). 

2.1 Cryptographic primitives and tools 

Homomorphic encryption. A homomorphic encryption 
scheme allows to perform certain algebraic operations on an 
encrypted plaintext by applying an efficient operation to the 
corresponding ciphertext. In addition, we require in this 
paper that the encryption scheme be semantically secure. In 
particular, we use an additively homomorphic encryption 
schemes where the message space is a ring (or a field). 
There, therefore, exists an algorithm +pk whose input is the 
public key of the encryption scheme and two ciphertexts, 
and whose output is Epk(m1 +m2) = Epk(m1) +pk Epk(m2). 
(Namely, given the public key alone this algorithm 
computes the encryption of the sum of the plaintexts of two 
ciphertexts.) The new ciphertext is an encryption which is 
done with fresh and independent randomness. There is also 
an efficient algorithm ·pk, whose input consists of the public 
key of the encryption scheme, a ciphertext, and a constant c 
in the field, and whose output is Epk(c · m) = c ·pk Epk(m). 

An efficient implementation of an additive homomorphic 
encryption scheme with semantic security was given by 
Paillier (1999, 2000). In this cryptosystem, the encryption of 
a plaintext from [0, N – 1], where N is an RSA modulus, 
requires two exponentiations modulo N2. Decryption 
requires a single exponentiation. The Damgård-Jurik 
cryptosystem (Damgård and Jurik, 2001) is a generalisation 
of the Paillier cryptosystem that encrypts messages from the 
field [1, Ns] using computations modulo Ns+1, where N is an 
RSA modulus and s a natural number. It enables more 
efficient encryption of larger plaintext. Security is based on 
the decisional composite residuosity (DCR) assumption. 

Oblivious transfer. Oblivious transfer (abbrev. OT) refers to 
several types of two-party protocols where at the beginning 
of the protocol one party, a sender, has an input, and at the 
end of the protocol the other party, the receiver, learns some 
information about this input in a way that does not allow the 
sender to figure out what the receiver has learned. This 
paper uses 1-out-of-N oblivious transfer 1(OT )N  as a basic 
building block. The 1OTN  protocol runs between two 
parties, a sender that has an input (X0, X1, …, XN–1), where  
Xi ∈ {0, 1}m, and a receiver that has an input I ∈ {0, 1, …, 
N – 1}. By the end of the protocol, the receiver learns XI and 
nothing else and the sender does not learn any information 
about I. In Naor and Pinkas (2005), it was shown how to 
implement 1OTN  using logN invocations of 2

1OT .  (In a 
nutshell, this transformation works by using logN pairs of 

keys, where each combination of logN keys encrypts a 
different input, and then letting the receiver learn a single 
key out of each pair.) There are many efficient 
implementations of 2

1OT ,  starting with a protocol of Even 
et al. (1982). Most of these protocols are designed for the 
semi-honest scenario, or for a malicious scenario where the 
protocol provides only the privacy property and not full 
simulatability. We note that while our protocol for the  
semi-honest scenario can use any OT protocol, the protocol 
for the malicious adversary scenario must use an OT 
protocol which is secure in the sense of full simulatability 
against malicious adversaries. Such protocols were 
described (e.g., in Camenisch et al., 2007; Green and 
Hohenberger, 2007; Peikert et al., 2008; Hazay and Lindell, 
2008). (We specifically need a committed OT variant where 
we can also prove a relation between the inputs of the 
sender, and therefore, we use a protocol which builds on the 
work of Jarecki and Shmatikov (2007) We also note that in 
the malicious case we use 2

1OT  and not 1OT .N  
The implementation that we ran (and which works in the 

semi-honest scenario) uses the protocol of Bellare and 
Micali (1990), but can be based on any OT protocol (e.g., 
those of Naor and Pinkas, 2001; Aiello et al., 2001). 

Instead of using 1OT ,n  one could use a symmetric PIR 
protocol, SPIR, which has o(n) communication overhead 
and also guarantees that the server learns only a single item 
of the sender’s inputs (Gertner et al., 1998). Any PIR 
scheme can be translated to a symmetric PIR scheme (Naor 
and Pinkas, 2005). Therefore, PIR protocols with sublinear 
or polylogarithmic communication overhead (Kushilevitz 
and Ostrovsky, 1997; Cachin et al., 1999; Lipmaa, 2005; 
Gentry and Ramzan, 2005) yield symmetric PIR protocols 
with the same overhead. Unfortunately, these PIR protocols 
require executing O(n) exponentiations (compared to O(n) 
symmetric encryption operations in 1OTn  protocols). We 
think that this computation overhead might be prohibitive 
for implementations, and therefore only describe and 
analyse the usage of OT. 

Preprocessing. The operation of any protocol can be 
potentially improved by moving part of the computation to a 
preprocessing phase, i.e., a step that is run before the parties 
receive their inputs. (Another name for preprocessing is 
offline/online computation, where preprocessing can be 
performed offline, and online operation happens after the 
input is received.) Running a preprocessing step lets the 
parties perform part of the computation in a time which is 
most convenient for them, and reduces the overhead 
incurred after receiving the inputs. 

It is important to distinguish between interactive and 
non-interactive preprocessing. The former requires the 
parties to communicate with each other before receiving 
their inputs, while the latter lets each party do its 
preprocessing by itself. It is of course preferable to use  
non-interactive preprocessing, and we demonstrate how it 
can be applied to the protocols that we present [this is 
preferable to methods that improve the overhead of OT by 
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performing interactive preprocessing, e.g., using the 
‘extended OT’ protocols of Beaver (1996) and Ishai et al. 
(2003)]. 

2.2 Related work 

Generic secure computation. Generic protocols (e.g., of Yao 
1986) can be used to compute any function. They are 
typically based on representing the computed function as a 
binary or an algebraic circuit, and applying the protocol to 
this representation. The overhead of these protocols depends 
on the size of the circuit representation of the functions. 
There are many theoretical constructions of secure generic 
protocols. Notable examples of implementations of secure 
computation are the Fairplay system (Malkhi et al., 2004) 
for secure two-party computation, and the FairplayMP and 
SIMAP systems (Ben-David et al., 2008; Bogetoft et al., 
2006) for secure multi-party computation. The system 
described in Lindell et al. (2008) and Pinkas et al. (2009) 
implements fully simulatable secure two-party computation 
according to the recent construction of Lindell and Pinkas 
(2007). For certain specific functions, there are specialised 
protocols which are more efficient than the generic 
constructions. Such functions include for example, equality 
testing (Fagin et al., 1996), or set intersection (Freedman  
et al., 2004). 

Computing the Hamming distance and computing similarity. 
Protocols for computing the scalar product of vectors 
(which is equal to the Hamming distance if the alphabet is 
binary) were suggested in Wright and Yang (2004), and 
Goethals et al. (2004). These protocols are based on the use 
of homomorphic encryption, and are only secure against 
semi-honest adversaries. (Our HDOT protocol for the case 
of binary alphabets and semi-honest adversaries borrows its 
first step from these protocols.) 

A protocol for secure efficient approximate computation 
of the Hamming distance, with a polylogarithmic 
communication overhead, was suggested in Indyk and 
Woodruff (2006) [previous protocols for this task use 

( )O  communication for ℓ-bit words (Feigenbaum et al., 
2006; Freedman et al., 2004)]. We wanted to improve upon 
these protocols for three reasons: 

1 These protocols introduce approximation errors. 

2 The protocols are only secure against semi-honest 
adversaries. 

3 In addition, these protocols have good asymptotic 
communication overhead, but use non-trivial 
components which seem difficult to implement with a 
performance that will be competitive for reasonable 
input sizes.2 (We note that another difficulty in using 
these protocols is that they output an approximation of 
the Hamming distance itself, rather than outputting a 
function of the approximated distance. It seems 
possible, however, to adapt the protocols to the latter 
requirement.) 

For the application of secure computation of similarity, it 
was shown by Charikar (2002) that the Jaccard similarity 
distance embeds isometrically into ℓ1. This means that 
similarity can be computed as the Hamming distance 
between two binary vectors. Our paper uses a more 
straightforward method which applies multiple permutations 
to the compared inputs, and then computes the Hamming 
distance between two vectors over a large alphabet. 

3 Hamming distance-based oblivious transfer 

A HDOT protocol is run between two parties, a receiver 
1( )P  and a sender 2( ).P  It is defined as follows: 

• Input: 1’sP  input is a word w ∈ Σℓ. 2’sP  input contains 
a word w′ ∈ Σℓ, and ℓ + 1 values Z0, … Zℓ. 

• Output: 1’sP  output is Zd, where d = dH(w, w′) is the 
Hamming distance between w and w′ (note that 1P  does 
not learn the Hamming distance itself). 2P  has no 
output. 

In other words, the HDOT functionality can be described as 
the following mapping 

( )( ) ( )( ),0 ,, , , ..., Hd w wZw w Z Z ′′ ⊥⎡ ⎤⎣ ⎦  

This paper describes a special protocol, binHDOT, for the 
case that the input words are binary (i.e., Σ = {0, 1}), and a 
general protocol which works for alphabets Σ of arbitrary 
size. 

3.1 Straightforward applications 

An HDOT protocol can be immediately used for computing 
any function which depends on the Hamming distance. 
Following are some interesting examples of such functions: 

• The Hamming distance itself can be computed by 
setting Zi = i for every 0 ≤ i ≤ ℓ. 

• The parity of the exclusive-or of the two inputs is 
computed by setting Zi to be equal to the least 
significant bit of i, for 0 ≤ i ≤ ℓ. 

• EQ – equality-based transfer, or 0 1, ( ,  ) :EQ w w′V V  This 
functionality outputs 0V  if w = w′, and 1V  otherwise. 
The functionality is computed by setting 0 0Z = V  and 

1iZ = V  for 1 ≤ i ≤ ℓ, and executing an HDOT protocol. 
1P  does not know which of the two cases happens 

(namely, whether w = w′). This is crucial for the 
applications that are described below. 

Recall that it is easy to design a protocol in which 1P  
learns a specific value 0V  if the two inputs are equal, 
and a random value otherwise. [See Fagin et al. (1996), 
or consider a protocol where 1P  sends a homomorphic 
encryption E(w), and receives back E(r · (w – w′) + 

0 ),V  where r is a random value.] Our protocol is unique 
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in defining a specific value to be learned if the two 
inputs are different, and in hiding whether the inputs 
are equal or not.3 

• Threshold HDOT protocol: The equality-based transfer 
protocol can be generalised to tolerate some errors and 
have the output be 0V  if the Hamming distance is 
smaller than a threshold τ, and be 1V  otherwise. In other 
words, it implements the following functionality: 

( ) ( )
( )0 1

0
|

1

, ,
,

, ,
Hτ

H

d τw w
HDOT w w

d τw w
′ <⎧⎪′ = ⎨ ′ ≥⎪⎩

V V

V
V

 

This functionality is implemented by setting 
0 1 0 ,τZ Z −= = = V  and 1.τZ Z= = = V  

The protocol for equality-based transfer is the major 
building blocks of the m-point-SPIR application described 
in Section 6. 

4 Protocols secure against semi-honest 
adversaries 

We first describe protocols which are secure against  
semi-honest behaviour of the potential adversaries. These 
protocols are relatively simple yet they are unique in 
invoking oblivious transfer a number of times which is only 
logarithmic in the input length. The malicious adversary 
scenario is covered in Section 5. 

4.1 A protocol for binary alphabets (binHDOT) 

Consider first the case where the alphabet is binary  
(Σ = {0, 1}). The binHDOT functionality can be securely 
implemented by applying Yao’s protocol to a circuit 
computing it. That solution would require running ℓ 
invocations of 2

1OT .  We describe here a protocol which 
accomplishes this task using only log(ℓ + 1) 2

1OT s  (see 
below a comparison of the performance of these two 
protocols). 

The protocol works in the following way: In the first 
step, the parties use homomorphic encryption to count the 
number of bits in which the two words differ. The result is 
in the range [0, ℓ]. Next, the two parties use 1

1OT +  
(implemented using log(ℓ + 1) 2

1OT )s  to map the result to 
the appropriate output value. The protocol is described in 
detail in Figure 1.4 

Correctness: The value dH is equal to the Hamming 
distance. In Step 4, 1P  computes (in )F  the value dH + r, 
which can have one of ℓ + 1 values (namely r, r + 1, …, r + 
ℓ). It holds with probability 1 / | |− F  that | | .r < −F  
(And since | |F  is typically very large compared to ℓ, e.g., 

1024| | 2≈F  and ℓ < 1,000, we do not consider here the 
negligible probability that this event does not happen.) 
Therefore, the computation of dH + r in F  does not involve 
a modular reduction and has the same result as adding them 

over the integers. Reducing the result modulo (ℓ + 1) (in 
Step 5) is therefore equal to (r + dH) mod (ℓ + 1). 1P  uses 
this result as its input to the 1-out-of-(ℓ + 1) OT protocol of 
Step 5. 2 ,P  on the other hand, sets the sender’s inputs in the 
OT such that each Zi value is the sender’s input indexed by 
(r + i) mod (ℓ + 1). As a result, the output of 1P  in the OT 
protocol is ,HdZ  as required. 

Note that if the parties are only interested in computing 
the value of the Hamming distance then the protocol can be 
greatly simplified: 2P  should send to 1P  in Step 3 the 
encryption Epk(dH). There is no need to run Steps 4 and 5. 

Improving the initial step using non-interactive 
preprocessing. An additional improvement can be achieved 
in the first step of the protocol, where 1P  sends an 
encrypted binary representation of the word. This 
representation can be precomputed using non-interactive 
preprocessing: 1P  can prepare in advance ℓ encrypted zeros 
and ℓ encrypted ones, instead of encrypting the input bits 
online. This preprocessing enables 1P  to send the binary 
representation directly without spending time online 
encrypting 0 and 1 values. 

Overhead. We compare the overhead of the binHDOT 
protocol to that of applying Yao’s protocol to a circuit 
computing the same functionality. We note that the runtime 
of an OT protocol is slower than that of a homomorphic 
encryption or decryption, and that the runtime of these latter 
operations is much slower than that of a homomorphic 
addition or a homomorphic multiplication by a constant 
(which in turn is much slower than symmetric encryption or 
decryption). This relation between run times can be 
summarised as follows (where > denotes ‘slower’, and >> 
denotes slower by an order of magnitude): 

OT homomorphic enc. homomorphic addition
symmetric enc.
> >>

>>
 

Without using any preprocessing, the binHDOT protocol 
requires 1P  to compute ℓ encryptions and a single 
decryption, while 2P  computes ℓ + 1 homomorphic 
additions, and the two parties run log(ℓ + 1) 2

1OT s  and  
(ℓ + 1) symmetric encryptions (in order to implement 

1
1OT ).+  In Yao’s protocol, the parties compute a circuit 

with ℓ input bits and a total of O(ℓ) gates. This requires ℓ 
executions of an 2

1OT  protocol and O(ℓ) symmetric 
encryptions and decryptions. Both protocols require O(ℓ) 
communication. 

The improvement achieved by the binHDOT protocol is 
noticeable since it reduces the number of OTs, which are the 
most time consuming operation, from ℓ to log(ℓ + 1). In 
addition, the binHDOT protocol can benefit from the  
use of non-interactive preprocessing to precompute all 
homomorphic encryption operations even before the parties 
know of each other. In that case the ℓ encryptions done by 

1P  are computed offline, and its online computation is 
composed of a single decryption and log(ℓ + 1) OTs. (Yao’s 
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protocol cannot precompute the oblivious transfers without 
using interaction. We note that if interactive preprocessing 
is possible, then the OTs themselves can be precomputed in 
both protocols, and this reduces the overhead of both 
protocols.) 

Theorem 1: The binHDOT protocol in Figure 1 is secure 
against semi-honest adversaries in the OT hybrid model 
(i.e., under the assumption that the OT protocol is secure). 

Proof: The security analysis is done under the assumption 
that the parties are semi-honest and that the OT protocol is 
implemented by an oracle (the latter assumption can be 
replaced by using an OT protocol secure against  
semi-honest adversaries). In the protocol, 2P  receives 
homomorphic encryptions of a binary representation of a 
word, and then it plays the role of the sender in an OT 

protocol in which it receives no output. We can simulate 
2’sP  view by sending it encryptions of random values. If 
2P  can distinguish between these encryptions and the 

encryptions it receives in the protocol, then a standard 
reduction shows, through a hybrid argument, that 2P  can 
break the semantic security of the encryption. As for 1,P  it 
receives from 2P  a random value (dH + r) and then it 
participates as the receive in the OT protocol. The parties 
are semi-honest and therefore they follow he directions of 
the protocol and thus the output of the OT is the designated 
output of the protocol. It is therefore possible to simulate 

1’sP  view by sending it first a random value, and then send 
it, as the output of the OT, the output of the functionality 
(learned in the simulation from the TTP). � 

Figure 1 The binHDOT protocol secure against semi-honest adversaries 

0 ,....,HDOT Z Zbin  (w, w′) Protocol 

Input: 1’sP  input is a word w = (w0, …, wℓ–1), 2’sP  input is ( )0 1 ,, ...,w w w −′ ′ ′=  where wi; {0,1}.iw′∈  2P  has additional inputs  
(Z0, …, Zℓ). 

Output: 1P  receives Zi such that dH(w, w′) = i. 2P  learns nothing. 

The protocol uses Epk(·), a homomorphic encryption function. The plaintexts are in a ring or a field .F  (We emphasise that ℓ and |Σ| are 
negligible compared to | | .F  A typical size could be 1024| | 2 .)=F  pk is a public key that both parties know, but only 1P  knows the 
corresponding private key and can decrypt messages. 

 1 1P  sends the homomorphic encryption of each bit of the binary representation of w = {w0, …, wℓ–1}, where wi ∈ {0, 1}. 

 2 2P  receives the encrypted representation {Epk(w0), …, Epk(wℓ–1)}. For each bit location j it calculates Epk(ϑj), where ϑj ∈ {0, 1} 
and is equal to 1 if, and only if, .j jw w′≠  The calculation is done in the following way: 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 11

1 1

j j jpk pk j j

j j jpk pk pk pk pk pk j

w wE E w w

w w wE E w

′ ′− −= ⋅ + ⋅

′ ′−= ⋅ + − ⋅

ϑ
 

  At the end of this step, 2P  has the values {Epk(ϑ0), …, Epk(ϑℓ–1)}. 

 3 

  

Using the homomorphic properties, 2P  sums the results of the previous step and computes ( ) ( )
1

0
.pk pk iHE Ed

−
=∑ ϑ  The value 

dH is in the range {0, 1, …, ℓ} and is equal to the Hamming distance between the two input words. In addition, 2P  chooses a 
random value ,r∈F  computes the value Epk(dH + r), and sends it to 1.P  (In other words, it shifts the result by a random value r. 
Note that with overwhelming probability, 1 / | |,− F  this addition operation does not involve a modular reduction.) 

 4 1P  receives Epk(dH + r) and decrypts the result. 

 5 Next, the parties map the result to the appropriate Zi value, by invoking a 1
1OT +  protocol where 1P  is the receiver and 2P  is the 

sender: 

  • The input of 1P  is (dH + r) mod (ℓ + 1). 

  • 2P  has inputs X0, …, Xℓ, where Xi = Z(i–r) mod (ℓ+1) (namely, Zi is mapped to input (i + r) mod (ℓ + 1) of the OT). 

  1’sP  output in the OT is its output in the binHDOT protocol. 
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Figure 2 The HDOT protocol for general alphabets 

0 ,....,HDOT Z Z  (w, w′) Protocol 

Input: 1P  has an input w = 〈w0, w1, …, wℓ–1〉 ∈ Σℓ. 2P  has an input 0 1 1 ,, , ...,w w w w −′ ′ ′ ′= ∈Σ  and additional input values Z0, …, Zℓ. We 
denote by jw  the binary representation of wj, which is ⎡log(|Σ|)⎤ bits long. 

Output: 1P  learns Zi such that dH(w, w′) = i, 2P  learns nothing. 

 1 For every i ∈ [0, ℓ – 1], 2P  chooses at random a value .i R∈ Fα  Both parties then run the protocol 1, ( , ).i i i iEQ w w+
′α α  ( ,i iw w′  

denote the binary representations of the letters wi and ,iw′  respectively. The output of this protocol is αi if ,i iw w′=  and αi + 1 
otherwise.) 

  At the end of the process, 1P  obtains the values {β0, …., βℓ–1}, where 

,
1,

i i i
i

i i i

w w
w w

′=⎧
= ⎨ ′+ ≠⎩

α
β

α
 

 2 

  

1P  sums, modulo (ℓ + 1), the βi values it received. Namely, it computes ( )1

0
mod( 1).iσ

−
= +∑β β  2P  sums its α values and 

computes ( )1

0
mod( 1).iσ

−
= +∑α α  

 3 Both parties run an 1
1OT +  protocol with the following inputs: 

  • 1P  is the receiver and its input is σβ 

  • 2P  is the sender and its input is {X0, …, …, Xℓ}, where ( ) mod( 1).i i σX Z − += α  

  The value that 1P  receives in the OT is defined as its output in the protocol. 

 
4.2 A protocol for arbitrary alphabets (HDOT) 

We now describe an HDOT protocol which works over 
arbitrary alphabets Σ. The protocol is based on applying the 
binHDOT protocol to every character of the words. More 
specifically, the parties have inputs w, w′ ∈ Σℓ, respectively. 
The protocol begins with the parties representing each of the 
letters of Σ as a binary word of length ⎡log |Σ|⎤, and then 
running (for each letter location) the equality-based transfer 
(EQ) protocol, which was defined above and is an 
application of binHDOT. In each execution of the EQ 
protocol 1P  learns a value αi if wi = w′i , or the value  
αi + 1 otherwise, where αi is chosen at random by 2.P  
Then, 1P  sums the values that it has received modulo ℓ + 1. 
The result is equal, modulo ℓ + 1, to i∑α  plus the 

Hamming distance of the original words. The parties then 
run an 1

1OT +  protocol to map the result to the desired 
output. The protocol is detailed in Figure 2. 

Correctness. For every 0 ≤ i ≤ ℓ – 1, 1P  and 2P  learn in 
Step 1 values βi, αi, respectively, such that βi = αi if the 
letters wi and iw′  are equal, and βi = αi + 1 if the letters are 

different. Let 
1

0
,ii

S
−

=
=∑α α  where here the addition is 

done in .F  Define Sβ similarly. Let d be the Hamming 
distance between the two input words. Then it holds with 
probability 1 / | |− F  that Sβ = Sα + d, where the addition 
here is done over the integers. Therefore, the values σα = Sα 
mod (ℓ + 1) and σβ = Sα mod (ℓ + 1) computed in Step 2 
satisfy that σβ – σα mod (ℓ + 1) is equal to the Hamming 
distance d (which is in the range [0, ℓ]). 

Consider now the OT in Step 3. Assume first that σα = 0. 
In this case 1’sP  input to the OT, σβ, is equal to the 
Hamming distance, and the inputs of 2P  to the OT are the 
values Z0, …, Zℓ (in that order). The OT protocol therefore 
computes the desired output in this case. Now, if σα > 0 then 

1’sP  input to the OT protocol is cyclically shifted (modulo  
ℓ + 1) by σα, while the order of 2’sP  inputs to the OT is also 
cyclically shifted (modulo ℓ + 1) by the same value σα. The 
OT protocol therefore computes the correct result. 

Overhead. The overhead is that of applying the binHDOT 
protocol ℓ times over log |Σ| long binary strings, and then 
running log(ℓ + 1) invocations of 2

1OT .  The parties run ℓ 
log log |Σ| + log(ℓ + 1) 2

1OT s,  as well as O(ℓ log |Σ|) 
homomorphic operations. (A direct implementation of this 
functionality using Yao’s protocol would have required 
invoking O(ℓ log |Σ|) OTs.) 

Theorem 2: The HDOT protocol in Figure 2 is secure 
against semi-honest adversaries in the OT hybrid model. 

Proof: Analysing security in the hybrid model, we assume 
that the OT and binHDOT protocols, and therefore also the 
EQ protocol, are executed by a trusted oracle. 2P  is the 
sender in the binHDOT and OT protocols. Therefore, it does 
not learn any information by participating in these 
protocols. 1P  receives in Step 1 the βi values, which are 
defined as either βi = αi or βi = αi + 1, where each αi value 
is chosen randomly by 2.P  In the last step, 1P  receives in 
the OT the result of mapping the sum of the values to the 
appropriate Zi value, which is the designated output of the 
protocol. We can therefore simulate 1’sP  view by first 



28 A. Jarrous and B. Pinkas  

sending it random values and then sending it the output of 
the functionality (as learned from the TTP used in the 
simulation). � 

4.3 Weighted Hamming distance-based OT 

The weighted Hamming distance between two ℓ-letter 
strings w, w′ is defined in the following way: The function 
depends on a set of integer weights ω0, …, ωℓ–1. We define 
δi, for 0 ≤ i ≤ ℓ – 1, to be 0 if ,i iw w′=  and 1 otherwise. The 

weighted Hamming distance is 
1

0 i ii
δ ω

−

=∑  (earlier we 

handled the case where ∀i ωi = 1). This function enables to 
assign to any letter location a specific weight corresponding 
to its importance. 

It is possible to slightly change the HDOT protocols  
to support the computation of a weighted Hamming 
distance-based OT. In the binary alphabet case, the revised 
binHDOT protocol computes in Step 2 the values Epk(ϑjωj) 
by multiplying Epk(ϑj) by ωi. The value dH is defined to be 

the sum of these values. Let 
1

0
.ii

ω
−

=
Ω =∑  The value of dH 

is in the range [0, Ω]. Therefore, 2P  has inputs Z0, …., ZΩ, 
and the last step of the protocol computes a 1-out-of-(Ω + 1) 
OT. In the case of an arbitrary alphabet, each βi value is set 
to αi + ωi if the two letters are different, and to αi is they are 
equal. Again, the last step computes a 1-out-of-(Ω + 1) OT. 

5 A binHDOT protocol for malicious adversaries 

Designing an efficient protocol which is secure against 
malicious adversaries [in the sense of full simulatability, as 
defined in Goldreich (2004)] is a challenging task. A 
protocol with this level of security can be implemented 
using generic constructions, such as the constructions in 
Lindell and Pinkas (2007), and Jarecki and Shmatikov 
(2007), but these currently impose an additional overhead, 
caused, for example, by communicating and evaluating 
multiple copies of a circuit computing the functionality. We 
design a new binHDOT protocol to handle the presence of 
malicious adversaries. In this protocol, the parties use 
committed OT to learn whether corresponding bits of the 
two words are equal, and then use an OPE protocol (Naor 
and Pinkas, 1999; Hazay and Lindell, 2008) to map the 
result to an output value. (This is different than the semi-
honest case, where homomorphic encryption was used to 
compare bits, and 1OTN  was used to compute the final 
result.) The new protocol uses OT and OPE protocols which 
are efficient and yet are secure in the sense of full 
simulatability against malicious adversaries. Security can 
therefore be analysed in the hybrid model. In more detail, 
the protocol uses the following tools: 

Committed 1-out-of-2 oblivious transfer with constant 
difference. (or 2

1COTCD ),  secure against malicious 
adversaries. A committed OT protocol in an OT protocol 
where the parties commit to their inputs: the sender commits 
to its inputs m0, m1 and the receiver commits to its input  

σ ∈ {0, 1}. During the protocol, each party can verify that 
the other party’s input is equal to the corresponding 
committed value. We define a committed OT with constant 
difference (COTCD, pronounced ‘cot-cd’) to be a 
committed OT with an additional auxiliary input composed 
of a value Δ known to the sender, and a commitment to Δ 
which is known to the receiver. The protocol lets the 
receiver verify that the difference of the two inputs of the 
sender is ±Δ. In other words, it either holds that m1 – m0 = Δ 
or that m0 – m1 = Δ. (In our application the COTCD protocol 
will be run several times with the same committed Δ value. 
The protocol will be run once for each letter location. The 
receiver learns some value if the two corresponding letters 
are equal. If the letters are different it learns that value plus 
Δ. Summing the values learned for all letters, the receiver 
obtains a result which is equal to some base value plus Δ 
times the Hamming distance. This value is then used for 
computing the final result.) 

We describe in Appendix how to construct the COTCD 
primitive based on the Jarecki and Shmatikov (JS) (2007) 
committed OT protocol, which is in turn based on the 
Camenisch-Shoup (CS) encryption scheme (Camenisch and 
Shoup, 2003).5 We use that protocol since it can be used to 
transfer strings, and since it is easy to add to it an efficient 
zero-knowledge proof that the messages of the sender have 
the required difference [it seems much harder to add a proof 
of this type to other OT protocols which are secure against 
malicious adversaries, such as the protocols of Hazay and 
Lindell (2008), Peikert et al. (2008)]. The JS protocol is 
UC-secure in the common reference string model and 
therefore all invocations of that protocol can be run in 
parallel. As a result, the HDOT protocol we construct can 
execute in parallel all ℓ invocations of the COTCD protocol. 
Alternatively, the two parties can run a secure protocol for 
computing the common random string (CRS) required for 
UC-security, and obtain a protocol which is secure in the 
standard model (see Appendix). The protocol is proved to 
be secure under the DCR assumption (i.e., the assumption 
on which the Paillier homomorphic encryption system is 
based). 

Constrained OT: COTCD is an example on a family of 
oblivious transfer protocols which we can denote as 
‘constrained OT’. This family contains OT protocols which 
have additional constraints on the values of their inputs and 
where the receiver verifies that these constraints hold. In the 
case of COTCD, the two input values of the sender must 
have a difference which is equal to the committed value Δ. 
(Another example is the circuit evaluation protocol of 
Jarecki and Shmatikov (2007), where the constraint is that 
the values transferred in the OT can decrypt entries in gate 
tables.) 

Commitment scheme. The CS encryption scheme (Camenisch 
and Shoup, 2003) is used in our protocol as a commitment 
scheme, as is suggested in Jarecki and Shmatikov (2007). 
The details are described in Appendix. 
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An OPE protocol. (Secure against malicious adversaries). 
An OPE protocol (Naor and Pinkas, 1999) is a protocol 
where the sender’s input is a polynomial P(·) of a certain 
degree, and the receiver’s input is a value x. The receiver’s 
output is P(x) while the sender learns nothing. We use the 
OPE construction of Hazay and Lindell (2008), which is 
secure (in the sense of full simulatability) against malicious 
adversaries, and uses very few exponentiations. 

The underlying fields. The output of the COTCD protocol is 
used as an input of the OPE protocol. The COTCD protocol 
runs in a group 2

* ,n= ZF  where 2
*
nZ  is defined by a safe 

RSA modulus n = pq, where p = 2p′ + 1, q = 2q′ + 1,  
|p| = |q|, p ≠ q and p, q, p′, q′ are all primes. The encryption 
scheme of Camenisch and Shoup, which is used in the 
protocol as a commitment scheme, works in the same group. 
The OPE protocol of Hazay and Lindell (2008) runs in ,NZ  
with N being an RSA modulus. Our protocol must enable 
the parties to use the result of the COTCD protocol as an 
input to the OPE protocol. It must therefore use a group 

2
*
nZ  and a field ,NZ  which satisfy that 2

*| | | |,Nn <Z Z  and 
therefore we will require that n2 < N. We define a simple 

mapping 2
*: ,Nnf →  where the only requirement is that 

no two elements of 2
*
n  are mapped by f to the same value 

in .N  The protocol then performs the initial computations 
in 2

*
n  and then uses f to map the result to .N  

The protocol itself is described in Figure 3. In the 
protocol, for every bit location i, 1P  receives a value 0

it  if 
the corresponding bits are equal, and the value 0

it + Δ  
otherwise. The value Δ, and also all 0

it  values, are randomly 
chosen by 2.P  (In the semi-honest case 1P  learned one of 
two values whose difference was 1. Here, the difference is a 
random number Δ in order to prevent attacks by a malicious 

1.)P  1P  then sums the values it received, and obtains the 

result 0
1

,ii
t d

=
+ ⋅Δ∑  where d is the Hamming distance. 

We use the notation 0
1

.r ii
σ t

=
=∑  2P  then prepares an 

OPE where ∀j ∈ [0, ℓ], P(f(σr + j · Δ)) = Zj. The parties 
execute an OPE and 1P  computes P(f(σr + dΔ)) and learns 
the desired result. 

Figure 3 The binHDOT protocol for the malicious case 

Malicious 0 ,...,HDOT Z Zbin  (w, w′) Protocol 

Input: 1’sP  input is a word w = (w0, …, wℓ–1), 2’sP  input is ( )0 1 ,, ...,w w w −′ ′ ′=  where wi, {0,  1}.iw′∈  2P  has additional inputs  
(Z0, …, Zℓ). 

Output: 1P  receives Zi such that dH(w, w′) = i (i.e., the Hamming distance of w and w′ is i). 2P  learns nothing. 

 1 2P  chooses at random 2
*

R nΔ∈  and sends to 1P  a commitment to Δ. In addition it proves to 1,P  using a zero-knowledge proof 
of knowledge, the knowledge of Δ. 

 2 For each pair of bits ( ,  ),i iw w′  both parties use COTCD to check whether the bits are equal: 

  • 2P  chooses a random value 0 ,i Rt ∈ F  and defines 1 0 .i it t= + Δ  

  • Both parties run a COTCD protocol: 
   (a) The auxiliary inputs to the protocol are Δ, known to 2,P  and a commitment to Δ, known to 1.P  

   (b) 1P  is the receiver and its input is wi. 

   (c) 2P  is the sender. If 0iw′ =  then it sets 0 1 0 1( ,  ) ( ,  );i i i ix x t t=  Otherwise, 0 1 0 1( ,  ) ( ,  ).i i i ix x t t=  

  In each execution of the protocol, if both bits are equal then 1P  learns 0 ,it  otherwise, 1P  learns 1.it  (In addition, the verification 
step of the COTCD protocol enables 1P  to verify that 1 0| | .i ix x− = Δ  If this check fails then 1P  aborts the protocol.) 

  By the end of this step, 1P  learns 0 1
0 1, ..., ,b bt t −

−  where ,i i ib w w′= ⊕  while 2P  does not learn any information. 

 3 
1P  computes ib

t iσ t=∑  and 2P  computes 0.r iσ t=∑  These summations are done in 2
* .n  

 4 
2P  constructs a polynomial 

0
( ) i

iP x a x=∑  in ,N  such that P(f(σr + i · Δ)) = Zi, ∀i ∈ {0, 1, …, ℓ} (where f is the simple 

mapping from 2
*
n  to ),N  and P(0) is random. (This construction succeeds if 0 ∉ {σr, …, σr + ℓΔ}, which happens with 

probability 1 ( 1)/ | | .)N− +  The degree of P is ℓ + 1. 

 5 1P  and 2P  run an OPE protocol to evaluate P(f(σt)), such that 1P  learns the result while 2P  does not learn any information. (f is 
a mapping function as defined in Section 5) 
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The protocol uses an OPE instead of 1
1OT +  since the values 

are mapped to locations in a large range, rather than to 
indices in the range [0, ℓ], in order to prevent a malicious 

1P  from learning any Zi value which does not correspond to 
the actual Hamming distance. If 1P  evaluates the 
polynomial at any point other than intended, it is likely to 
receive a random answer since it does not know Δ and is 
therefore unlikely to choose any point corresponding to a Zi 
value. As for a malicious 2 ,P  its inputs w′ and Z0, …, Zℓ can 
be extracted from its interaction with the OT and OPE 
protocols, and are used for a simulation-based proof. 

Theorem 3: (Correctness) The protocol of Figure 3 
computes the binHDOT functionality. 

Proof: Let us follow the steps of the protocol. In each 
execution of the COTCD protocol, 1P  learns 0

it  if both bits 
are equal, otherwise, it learns 1 0 .i it t= + Δ  In other words, it 

learns ,ib
it  where .i i ib w w′= ⊕  

Then, in Step 3, 1P  computes 0 1
0 1 ,b b

tσ t t −
−= + +  and 

2P  computes 0 0
0 1.rσ t t −= + +  Therefore, it holds that σt – 

σr = Δ · dH(w, w′). In Step 4, 2P  constructs a polynomial 
P(x) such that: P(f(σr)) = Z0; P(f(σr + Δ)) = Z1, …, P(f(σr + ℓ 
· Δ)) = Zℓ. In the last step of the protocol, the parties use an 
OPE protocol to compute ( , )( ( )) .Ht d w wP f σ Z ′=  � 

Theorem 4: (Security) The protocol securely computes 
binHDOT in the presence of malicious adversaries. 

Proof: The security of the protocol is proved in the hybrid 
model, assuming that the COTCD and OPE primitives, as 
well as the zero-knowledge proof of knowledge of Δ used in 
the protocol, are performed by a trusted oracle (or trusted 
party). This assumption is justified since we describe in 
Appendix an implementation of the COTCD protocol which 
is fully simulatable secure against malicious adversaries, 
and since a protocol for OPE, with similar security, was 
presented by Hazay and Lindell (2008). The security of the 
ZK proof of knowledge of Δ is based on standard 
arguments. All these protocols (COTCD, OPE and ZK 
proof) have security proofs based on the DCR assumption. 

We compare the execution of the protocol between 1P  
and 2P  to an execution with a TTP, where the TTP receives 
the inputs of both parties and computes the following 
functionality: If the input of 1P  is w and the input of 2P  is 
〈w′, (Z0, …, Zℓ)〉, then the output of 1P  is ( , ) .hd w wZ ′  
Otherwise if the input of 1P  is a special symbol ρ then the 
output of 1P  is a random value. Otherwise if the input of 
either party is a special symbol ⊥ then the protocol 
terminates. 

We first prove security in the case that 1P  is corrupt and 
then in the case that 2P  is corrupt. 

1P  is corrupt. The idea behind the proof is that 1’sP  choices 
in the COTCD protocols define its input w. 1P  is then 
supposed to sum the values it receives in the COTCD 

invocations and uses the result as its input to the OPE 
protocol. If it uses a different input to the OPE protocol, 
then, since it does not know Δ, it happens with 
overwhelming probability that 1P  queries a value of the 
polynomial at a point which was not defined by Z0, …, Zℓ 
and receives a random answer. 

More formally, let A  be an adversary controlling 1.P  
We construct a simulator Sim that generates the view of 
both parties, A  and 2 ,P  in the hybrid model, given only 
access to A  and to the ideal model: 

1 Sim chooses a random value Δ and sends to A  a 
commitment of Δ; Then, Sim runs the zero-knowledge 
proof of knowledge of Δ, with A  as the verifier. 

2 For each invocation of COTCD, Sim (simulating a 
trusted oracle that executes the COTCD protocol) 
receives ’sA  bit input. It defines ’sA  corresponding 
input bit wi to be this value, and then chooses a random 
value ti and sends it to A  as the result of the COTCD 
protocol. (This happens if ’sA  input to the protocol is 
0 or 1. Otherwise, if ’sA  input is ⊥ or a value that is 
different from 0 or 1 then Sim terminates the protocol.) 

 After finishing all executions of the COTCD protocol, 
Sim computes .t iσ t=∑ . Also, Sim has ’sA  input  

w = (w0, …, wℓ–1). It sends it to the trusted party 
computing the binHDOT functionality and receives 
from it the result Z. 

3 Sim then plays a trusted oracle computing the OPE 
protocol. Sim receives ’sA  input to the OPE: If ’sA  
input to the OPE is σt then Sim sends it the answer Z; 
Otherwise, if its input is ρ, then Sim sends A  a random 
value; if the input is ⊥ then Sim terminates the protocol. 

4 Sim outputs whatever A  outputs and halts. 

We now show that the joint output distribution of A   
and 2P  in the hybrid model protocol execution is 
indistinguishable from the output of Sim and 2P  in the ideal 
world simulation. 

We start with the case where A  sends ⊥ to Sim, i.e., 
terminates its running in the protocol. This could happen in 
any phase of the protocol and as in the hybrid model, where 
Sim terminates, the protocol also terminates and A  does 
not learns any further information. 
A  and 2P  invoke COTCD protocol, where in the 

hybrid model, A  sends its input to COTCD. If A  sends 0 
or 1 then it learns the appropriate result. Otherwise, the 
protocol terminates. 

Now A  and 2P  invoke OPE protocol, consider first the 
case that ’sA  input to the OPE is equal to σt. In the hybrid 
model execution, this results in evaluating the polynomial 
with an input which is the sum of the answers received in 
the COTCD protocols, namely with an input f(σt) = f(σr + Δ 
· dH(w, w′)), where w = w1, …, wℓ and each wi is ’sA  input 
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to the ith invocation of COTCD. The result is ( , ) ,Hd w wZ ′  as is 
the result in the simulation. 

Consider now the case that ’sA  input to the OPE is 
different from σt. Note that A  does not know Δ, which was 
chosen at random, and therefore with probability 
1 / | |N−  it evaluates the polynomial at a point which is 
different than σr, σr + Δ, …, σr + ℓΔ In the hybrid model 
execution, this results in receiving an answer which is 
random and independent of Z0, …, Zℓ. This also happens in 
the simulation. 

2P  is corrupt. Let A  be an adversary controlling 2.P  The 
proof is based on the following ideas: 

1 Sim extracts the value of Δ from the zero-knowledge 
proof of knowledge that is proved by A  

2 Sim then learns the inputs that A  uses in the COTCD 
invocations, and based on these values the simulator 
computes w′ and σr 

3 It also learns the coefficients of the polynomial P(·) 
which is ’sA  input to the OPE, and can therefore 
compute Z0 = P(σr), …, Zℓ = P(σr + ℓΔ) 

4 Finally, the simulator sends 〈w′, (Z0, …, Zℓ)〉 to the 
TTP. 

In more detail, we construct a simulator Sim that generates 
the view of both parties, 1P  and 2 ,P  given only 2’sP  input 
in the ideal model. 

1 Sim receives from A  the commitment to Δ, and then 
plays the verifier in the zero-knowledge proof of 
knowledge. If Sim accepts the proof, it runs the 
knowledge extractor in order to learn Δ. Otherwise it 
terminates the execution of the protocol and sends ⊥ to 
the trusted party. (Also, here and throughout the 
simulation, if A  sends ⊥ as input then Sim halts the 
execution and sends ⊥ to the trusted party.) 

2 For each execution of COTCD, Sim acts as a trusted 
oracle that performs the protocol. Sim therefore  
learns ’sA  input 0 1( ,  ).i ix x  First, Sim verifies that 

0 1| |i ix x− = Δ  and if this property does not hold it 
aborts the protocol. Then, Sim defines each letter iw′  of 
the input word w′ of :A  

• 1,iw′ =  if 0 1
i ix x= + Δ  

• 0,iw′ =  Otherwise. 

 Finally, Sim computes 0.iw
r i iσ x t′= =∑ ∑  

3 In the OPE step, Sim simulates a trusted party 
computing the OPE functionality. In this functionality, 
A  provides an input but receives no output. It receives 
from A  its input P(·) to the OPE, which could be a 
random polynomial. It then computes Z0 = P(f(σr)),  
Z1 = P(f(σr + Δ)), …, Zℓ = P(f(σr + ℓΔ)). Now, Sim 

sends to the trusted party (computing binHDOT) the 
input 〈w′, (Z0, …, Zℓ)〉. 

4 Sim outputs whatever A  outputs and halts. 

Also here, we show that the joint output distribution of A  
and 1P  in the hybrid model protocol execution is 
indistinguishable from the output of Sim and 1P  in the ideal 
world simulation. 

In the case where A  sends ⊥ to Sim, i.e., terminates its 
running in the protocol, which could happen in any phase of 
the protocol, Sim terminates, as in real execution where the 
protocol terminates. 
A  and 2P  run ℓ invocations of COTCD, where in the 

hybrid model are executed by TTP. A  is enforced to 
commit Δ and proofs its knowledge as in the simulation, in 
addition, both values, 0 1( ,  ),i ix x  that A  sends to the TTP 
satisfies 0 1| |i ix x− = Δ  and 1P  learns one of the results, 
otherwise, the protocol aborts. 

In the last step, A  and 1P  invoke OPE, where 1’sP  
input is 0

( , )t H w wiσ t d ′= + Δ ⋅∑  and A  builds a polynomial 

of ℓ + 1 degree, this polynomial can be a random 
polynomial, and both parties sends their inputs to the TTP, 
as in the simulation, 1P  learns the result and A  does not 
learn any information. � 

Efficiency. The overhead of the protocol is composed of 
running ℓ invocations of the COTCD protocol (which can be 
run in parallel, since the protocol is UC-secure), and a single 
invocation of the OPE protocol of Hazay and Lindell 
(2008). 

The COTCD protocol, based on Jarecki and Shmatikov 
(2007), requires O(1) rounds of communication and a 
constant number of exponentiations per party, including our 
auxiliary input and verification steps. In addition, the OPE 
protocol (Hazay and Lindell, 2008) requires O(ℓ + s) 
exponentiations, where s is a statistical security parameter, 
and a constant number of communication of rounds. 

Thus, the overhead of the entire protocol is O(ℓ) rounds 
of communication and O(ℓ + s) exponentiations. 

5.1 Securing the applications against malicious 
adversaries 

The protocol described above is secure against malicious 
behaviour of either party. However, it does not enforce any 
structure of the inputs Z0, …, Zℓ of 2P  and therefore a 
corrupt 2P  can set these inputs to arbitrary values. This 
‘feature’ does not affect plain usage of the protocol, but it 
means that security against malicious adversaries cannot be 
guaranteed if the protocol is used for computing any 
functionality that requires specific relations between the Zi 
values. Unfortunately, this is relevant to the relations 
required in the applications detailed in Section 3.1. For 
example, the EQ application, i.e., equality-based transfer, 
requires that Z1 = Z2 = ··· = Zℓ (since all these values 
correspond to the case that w ≠ w′). As a result, the protocol 
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cannot be used ‘as is’ as a building block for protocols 
(secure against malicious adversaries) for the HDOT 
functionality for arbitrary alphabets, or for the EQ 
functionality. 

In order to adapt the protocol for these tasks, it is 
required to add zero-knowledge proofs which assure 1P  that 
the Zi inputs follow the desired structure. This is of course 
possible in principle, but in this work we have not examined 
how to optimise the efficiently of such proofs. We will only 
describe here the steps which are required in order to design 
and implement an EQ protocol secure against malicious 
adversaries (protocols for the other applications can be 
designed in a similar way): 

1 The protocol needs an additional step where 1P  obtains 
a commitment Com(σr) to the base value 0.r iσ t=∑  

This commitment can be computed given the 
commitments that 2P  generates in the committed OT 
protocols; the correctness of the committed value can 
be proved using 2’sP  proofs about the Δ differences of 
its input pairs. (Namely, 2P  must prove that there exist 
bits b0, …, bℓ–1 such that ,ib

rix σ=∑  and that ∀i 
1 0 .)i ix x= + Δ  

2 The parties need to use a ‘committed OPE’ protocol, 
where 2P  commits to the coefficients of its polynomial 
(such a protocol has not been described yet, but it is not 
hard to imagine how to implement it using techniques 
similar to those used for committed OT). 

3 2P  must prove that there are values s; d such that s is 
committed to in Com(σr), d is committed to in Com(Δ), 
and it holds that P(s + d) = P(s + 2d) = ··· = P(i + ℓd). 
The main challenge in designing this step is that  
P(s + d) is computed to by multiplying the committed 
coefficients of P by powers of the value s + d. Namely, 
the proof is about the sum of multiplications of 
committed values. 

6 Application: m-point SPIR 

Another application of the HDOT protocol is a new variant 
of SPIR which we denote as m-point-SPIR. A definition and 
a discussion of single server PIR and symmetric PIR appear 
in, e.g., Kushilevitz and Ostrovsky (1997), and Cachin et al. 
(1999). In short, a PIR protocol involves a server with a 
database of N items x0, …, xN–1 and a client who is 
interested in learning entry xi of the database. This must be 
accomplished with o(N) communication, without revealing i 
to the server, and (in the case of symmetric PIR) without 
revealing to the client anything but xi. 

The m-point-SPIR protocol that we define can be 
applied if at most m of the items of the server’s database 
have specific values, and all other items have some default 
value .x  The client must not know whether the value it 
learns is the default value x  or one of the unique  
values. We describe below a couple of applications of  

m-point-SPIR. The m-point-SPIR functionality is similar to 
a simpler functionality, where the client learns a random 
value if its input does not match any of the m indices which 
have specific values. The latter functionality is much 
simpler to implement (using OPE), as we detail below. 

We show a protocol which implements m-point-SPIR 
with O(mlogN) communication and O(mlogN) computation 
(the smaller m is, the more efficient the protocol is). 
Therefore, the communication is o(N) as long as m = o(N / 
logN). Another nice property of the m-point-SPIR protocol 
is that it can be implemented based on the existence of 
oblivious transfer alone. This property is not known for 
general SPIR protocols. [Furthermore, it is known that there 
cannot exist any transparent black-box reduction of PIR to 
OT (Meier and Przydatek, 2006).] 

The m-point-SPIR functionality is defined in the 
following way. The server has inputs 0 ≤ p1, …, pm ≤ N – 1, 
which are all distinct, and additional values ,x  1 , ..., .mp px x  
The client has an input 0 ≤ i ≤ N – 1. The output of the 
client is jpx  if there is an index 1 ≤ j ≤ m such that i = pj, or 
x  if no such pj exists. 

1-point SPIR. The implementation of 1-point-SPIR is 
straightforward given our previous protocols. The parties 
simply execute the protocol 1 , 1( , ),px xEQ i p  whose output is 

1px  if i = p1, and x  otherwise. (The EQ protocol is defined 
in Section 3.1.) The communication overhead is of the order 
of the length of the index i, namely O(logN), times the 
length of the security parameter (i.e., the length of the 
homomorphic encryption). (This is under the reasonable 
assumption that the length of the database values (the x 
values) is in the order of the length of the security 
parameter; otherwise the communication is O(logN · |x|).) 
The computation overhead is O(logN), and it is composed of 
O(logN) homomorphic encryptions and O(log logN) OTs. 

m-point-SPIR. For the general case of m-point-SPIR, the 
server first defines m random values 1, ..., mz z′ ′  under the 
constraint that their exclusive-or is .x  It then defines values 
z1, z2, …, zm satisfying the constraints 

1 2 3 1

1 2 3 2

1 1

m

m

m m m

z z z z x
z z z z x

z z z x−

′ ′ ′⊕ ⊕ ⊕ ⊕ =
′ ′ ′⊕ ⊕ ⊕ ⊕ =

′ ′⊕ ⊕ ⊕ =

 

The parties execute the protocols 1 1 2 2, 1 ,( ,  ),  z z z zEQ i p EQ′ ′   
(i, p2), up to , ( ,  ).m mz z mEQ i p′  The client then computes the 
exclusive-or of the m values that it learned in these 
protocols. 

Correctness follows from the fact that if there exists a j 
coordinate for which i = pj then the client learns a single zj 
value. Otherwise i ≠ p1, …, pm and the client learns only jz′  
values. Therefore, the exclusive-or of all the values that the 
client receives is equal to xj in the former case, or to x  in 
the latter case. 
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It is easy to verify the security of this protocol 
(assuming that the parties are semi-honest). Note that the 
client always performs the same operations and does not 
recognise whether it learned the value x  or one of the m 
special values. The communication overhead is O(mlogN) 
times the length of the security parameter, and the 
computation overhead is also O(mlogN). This is therefore a 
SPIR protocol (with o(N) communication) as long as  
m = o(N / logN), and in that case the computation overhead 
is also o(N). (A ‘traditional’ PIR protocol will have O(N) 
computation overhead, since it must also process the entries 
with the default value.) 

Basing m-point-SPIR on OT. The EQ protocol (which is 
essentially the HDOT protocol) is based on using a 
homomorphic encryption scheme and an oblivious transfer. 
However, it is easy to see that the usage of homomorphic 
encryption can be replaced with the usage of oblivious 
transfer alone (as is done in the HDOT protocol for the 
malicious case). As a result, m-point-SPIR can be based on 
oblivious transfer alone. 

Comparison to other protocols. Our m-point-SPIR protocol 
can be compared to OPE, in which the server has an  
(m – 1)-degree polynomial P, defined over a field of size at 
least N, and where the polynomial satisfies P(pj) = xj for  
all j ∈ [1, m]. The client has input 0 ≤ j ≤ N – 1 and it 
obliviously computes P(j). The OPE protocol has 
communication and computation overheads of O(m) field 
operations, but it has the drawback that for inputs not in  
p1, …, pm the client receives a random output rather than a 
specific value .x  

The m-point-SPIR protocol can also be compared to PIR 
protocols of the type of the protocol of Cachin et al. (1999) 
(that protocol is based on the φ-hiding assumption rather on 
general assumptions). These protocols, too, have the 
property that the server’s work depends on the number of 
items in its database that have non-default values. Namely, 
it is O(m) if the server has m items in its database, even if 
the range of the client’s input is [1, N]. Still, in those 
protocols the sender is not able to set a ‘default’ value x  to 
be returned for all other N – m values of the client’s input. 
Finally, the m-point-SPIR functionality can be implemented 
using Yao’s generic protocol and a circuit of size O(mlogN), 
and mlogN invocations of OT. The observations in Section 3 
comparing the overhead of the HDOT protocol to that of 
Yao’s construction, are relevant in this case, too. We also 
believe that it is simpler to implement the m-point-SPIR 
protocol compared to implementing a circuit-based solution. 

Application I: private matching for cardinality threshold. 
This is an example where it is important that 1P  receives the 
default value if no match is found. The scenario involves 
two parties with private sets of m items, which want to find 
out if the size of the intersection of the sets is greater than 
some thresholds. The problem was defined in Freedman  
et al. (2004) as a variant of the private matching protocol 
which was the main subject of that paper. The solution there 
requires the parties to run an OPE for each item xi of the 
first party, in which the first party either learns a specific 

value or a random value, depending on whether xi is in the 
set of the second party. The parties then use Yao’s protocol 
to evaluate a circuit whose input is the values learned by 

1,P  and which computes whether the size of the intersection 
is greater than the threshold. We can use the m-point-SPIR 
protocol to replace the OPE: Suppose that 1’sP  inputs are 
x1, …, xn and 2’sP  inputs are y1, …, yn. Then for each xi the 
parties run an m-point SPIR where 1P  learns αi if xi ∈ {y1, 
…, yn}, or αi + 1 otherwise, where α is a random number 
chosen by 2.P  We can then ask 1P  to sum the values it 
learned, and replace Yao’s protocol with an 1OT ,m  as was 
done in the binHDOT protocol of Section 4.1. (This was 
impossible when an OPE was used, since in that case the 
sum was random if there was even a single item of 1P  
which was not in 2’sP  set.) 

Application II: lottery service. As an example of another 
application of m-point-SPIR, consider a lottery service 
where the server has a range of tickets, only a few of which 
are winning tickets. The client uses the protocol to ‘buy’ a 
ticket, but the client must not know, at least not until some 
time in the future, whether this is a winning ticket. The 
server’s database contains the prize corresponding to each 
winning ticket, or the default ‘no prize’ value x  (which, of 
course, is associated to most of the tickets). It must be 
ensured that a client that receives the value x  cannot 
identify that this is the default value. The server must not 
learn which ticket was chosen by the buyer. (A lottery 
service with many clients must handle many other different 
issues which we do not describe, but m-point-SPIR seems 
like a good approach for handling the purchase of tickets.) 

7 Privacy-preserving computation of document 
similarity 

HDOT protocols can be used to decide, in a secure way, 
whether two documents are similar (but not necessarily 
identical). More specifically, we consider the problem of 
two parties, each having a set of documents, that wish to 
find similar documents while ensuring that no party reveals 
any unnecessary data. 

Motivation. An example of the need for privacy-preserving 
computation of similarity is the challenge facing conference 
committees that wish to detect the simultaneous submission 
of the same paper (or close variants of it) to more than a 
single conference. This practice is unacceptable, and 
conference committees attempt to identify parallel 
submissions, but they are hindered by the fact that papers 
must be handled confidentially and therefore conference 
committees cannot disclose the papers they have received to 
other committees. 

If there was a TTP which was trusted by different 
conference committees then the problem could have been 
solved by the committees sending the documents to the 
TTP, which could then check them for similarity. Our goal 
is to build a privacy-preserving similarity algorithms that is 
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run by the parties themselves and simulates the privacy 
offered by the TTP. 

Algorithms for computing similarity between two 
documents were suggested by Broder et al. (1997) (and 
subsequent work) and are based on computing the Jaccard 
measure. The algorithms extract the words of each 
document, and sample them using Min-wise hashing 
(Broder et al., 2000) to create a set of words representing 
the original document. They then compare the sampled sets 
of the two documents. Similarity is defined as the size of the 
intersection of the sets of sampled words divided by the size 
of their union. Note that simple adversarial transformations 
to the documents, such as reordering words or adding some 
text, do not substantially affect the result of this class of 
algorithms. 

7.1 Preliminaries 

In this section, we introduce the similarity algorithms, and 
the cryptographic tools and notions used in our protocols. 
We begin by defining Rabin’s fingerprinting scheme and 
Min-wise hash functions. It is important to emphasise that in 
this application we focus only on the case of semi-honest 
adversaries. 

7.1.1 Rabin’s fingerprinting scheme 

Rabin’s fingerprinting scheme (Broder, 1993; Rabin, 1981) 
is a method for mapping large objects to short tags. It is 
based on arithmetic modulo an irreducible polynomial, P(·). 
A fingerprinting family { : {0, 1} }kf= Ω→F  (where Ω is a 
set of objects), fulfils the following two properties: 

a if f(A) ≠ f(B) then A ≠ B 

b Pr[f(A) = f(B) | A ≠ B] ≈ 1/2O(K), for .Rf ∈ F  

Rabin’s fingerprinting algorithm has an efficient 
implementation over the field GF(2k), requiring a constant 
amount of memory and a linear computation overhead (see 
Broder, 1993; Rabin, 1981) for details. 

7.1.2 Min-wise hash functions 

The similarity algorithm uses sampling based on Min-wise 
independent permutations (Broder et al., 2000). Briefly, a 
set of permutations Π ⊆ Sn is Min-wise independent if for 
any set X ⊆ [n] and any x ∈ X, when π is chosen at random 
from Π it holds that 

{ }( ) 1( ) .( )
| |

π xπ X
X

= =Pr Min  

Namely, the probability that an element becomes the 
minimum element of the image of X under π is equal to all 
elements in X. 

In practice, one can approximate the usage of Min-wise 
independent permutations by using pair-wise independent 
linear hash functions of the form π(x) = ax + b (where a, b 
are chosen at random and a ≠ 0). These functions are easy to 

represent and are efficient to calculate, and, as claimed by 
Broder et al. (2000) they perform well for practical 
applications of document similarity. 

7.1.3 Computing similarity 

Exact definitions of similarity between documents were 
given by Broder (2000), who investigated this problem for 
an application of clustering web pages. There defined the 
resemblance between documents, which is a number 
between 0 and 1. A resemblance close to 1 indicates that the 
two documents are ‘roughly the same’. 

A first step in computing similarity is representing each 
document D  by a set of shingles ( ).S D  Shingles are 
unique sequences of tokens (which could be letters, words, 
lines, etc.) in a document, that are grouped into overlapping 
sets (Broder, 2000). Usually, all shingles have the same 
length; for instance, if we define each token to be a word, 
the four-shingling of the document =D  (a, rose, is, a, 
rose, is, a, rose) is the set ( )S =D  {(a, rose, is, a), 
(rose, is, a, rose), (is, a, rose, is)}. [Shingling can also 
be defined in other ways (Broder, 1997).] 

Broder (2000) defined the resemblance of two 
documents 1D  and 2D  (which is also known as the Jaccard 
similarity coefficient), as 

( )
( ) ( )
( ) ( )
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D D
D D

D D
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1 2( , )r D D  measures the common features of both 
documents by computing the size of the intersection of their 
two sets of shingles divided by the size of the union of these 
sets. Intuitively, the resemblance captures the degree to 
which the two documents are similar. Notice that if two 
documents are identical, 1 2 ,=D D  then 1 2( , ) 1,r =D D  and 
that if two documents are totally different, 1 2 ,∩ =D D φ  
then 1 2( , ) 0.r =D D  

To simplify the computation, it is common to map 
shingles into shorter, fixed-length numerical values using 
Rabin’s fingerprinting algorithm (Rabin, 1981; Broder, 
1993) and apply the rest of the computation to these values. 

The process computing the resemblance uses the entire 
document, this process is inefficient because it requires 
large amounts of memory and runtime. Therefore, Broder  
et al. suggested to improve the computation of similarity by 
first sampling part of the shingles, using Min-wise hashing 
functions (Broder, 1997, 2000; Broder et al., 2000), and 
then computing the function r(·,·) of the sampled values. 
Two different ways were suggested for sampling shingles of 
a document: 

• A single permutation is used to sample a subset of the 
shingles of each document in the following way: each 
shingle is mapped to a value by the permutation π, and 
from each document we take the shingles that were 
mapped to the n smallest values. The function r(·,·) is 
then applied to these samples. [This algorithm is 
detailed and analysed in Broder et al. (1997).] 
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• Similarity can also be computed using multiple 
permutations. Each permutation is used to choose the 
shingle from each document that is mapped by it to the 
smallest value. For each permutation, the two values 
that are chosen by it from the two documents are 
compared. We use this method, as is detailed and 
justified in the text below. 

Computing similarity using multiple permutations. We 
assume that shingles are represented by values in a range of 
size p. The computation of similarity uses a set of n 
permutations {π0, π1, …, πn–1} chosen uniformly over the set 
of Min-wise independent permutations of [p]. Computing 
similarity operates in the following way: 

1 For each document, the minimall according to each 
permutation is sampled. Namely, the parties compute 

1[ ( ( ))]iπ S DMin  and 2[ ( ( ))],iπ S DMin  where i ∈ {0, 
…, n – 1} and where Min outputs the minimall value of 
the set of its inputs. 

2 The value 1 2( ,  )ψ D D  is defined to be the number of 
elements for which 1 2[ ( ( ))] [ ( ( ))].i iπ S π S=D DMin Min  

3 The resemblance is defined as 1 2( ,  ) / .ψ nD D  

It is easy to see Broder (2000), that 
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Therefore, the expected value of 1 2( ,  ) /ψ nD D  is 
1 2( ,  ),r D D  and it can be used to estimate this value. This 

provides a way for estimating the value of 1 2( ,  )r D D  
(which does not require to compute the exact intersection of 
union of the documents). An analysis of the variance of this 
estimation appears in Broder (2000). 

Our approach. We have chosen to use the multiple 
permutations approach because the accuracy of this solution 
has a smaller variance than that of the solution which is 
based on a single permutation. Another important reason 
that makes this solution preferable for our purposes is that it 
requires to compare the item sampled by a certain 
permutation from the first input which exactly one item, the 
item sampled by this same permutation from the second 
input. This property is useful for two reasons: 

1 Implementing a privacy preserving version of the 
second solution is easier than implementing a similar 
variant of the first solution, since it requires checking 
the equality of pairs of items, rather than computing the 
intersection of larger sets. 

2 In our last protocol each party first samples a set of 
items from its own input, and then the protocol uses 
only part of the sampled sets of both parties (without 
letting the parties know which items are used by the 
protocol). This is easier if we know that using the jth 

element of the first set requires using the jth element of 
the second set. 

7.2 Problem statement 

We consider a scenario with two parties: 1P  which has 
document 1D  and 2P  which has document 2.D  Both parties 
must run a protocol that outputs 1 if 1D  is similar to 2 ,D  
and output 0 otherwise. This must be done without revealing 
any other information about the documents. We assume that 
two documents are similar if ( ,  )r A B  is greater some 
predefined threshold, which is a parameter set by the 
parties. 

We will describe three ideal scenarios for checking 
similarity with a TTP. The first scenario does not leak any 
information except for the result of whether ( ,  )r A B  is 
greater than the threshold, while the second and third 
scenarios reveal some additional information. We will then 
describe two-party protocols that simulate these ideal 
scenarios – namely, do not leak more information than in 
the corresponding ideal scenario. (As can be anticipated, the 
protocols corresponding to the second and third scenarios 
will be more efficient than the protocol corresponding to the 
first scenario.) 

Ideal scenario 1 – Naive TTP. In this scenario, the TTP 
receives both documents 1D  and 2 ,D  and computes the 
similarity between them. The computation of the similarity 
is based on the Jaccard similarity [equation (1)], applied 
either to the entire documents, or to a sampling of the 
shingles of each document (for instance, by sampling the 
documents using multiple permutations and computing 
similarity based on the sampled values). 

Ideal scenario 2 – TTP with sampling by the parties (TTP 
SbP). In this scenario, the sampling of the documents is 
done by the parties themselves: both 1P  and 2P  perform the 
sampling of their own documents and send the results to the 
TTP. The TTP then evaluates similarity by applying, to the 
sampled sets, the algorithm that computes similarity using 
multiple permutations (described in Section 7.1.3). 

This approach is more efficient than ideal scenario 1, but 
it leaks some additional data since each party knows which 
values of its set were used in evaluating the similarity. (In 
the extreme case, if the size of the sampled subset is 1, then 

1 2( ,  ) 1r =D D  implies that the specific sampled shingle 
exists in both documents.) 

Ideal scenario 3 – TTP with obscured sampling by the 
parties, i.e., TTP with obscured SbP. This scenario is similar 
to the previous one but it aims to somewhat obscure the 
exact sampled shingles that are used to compute the 
similarity. This is done in the following way: 

1 Both parties sample k · n items from their documents 
(where k > 1 and n are parameters) and send the 
sampled items to the TTP. 
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2 The TTP chooses a random subset of n pairs of items 
from these subsets and uses it to evaluate similarity. 

The usage of part of the sampled elements to compute 
similarity aims to improve the privacy of the protocol of 
scenario 2, since no party knows for sure what elements 
were used. However, some information does leak 
(compared to the first protocol were all items are used for 
computing similarity). It seems that a larger value of the 
parameter k corresponds to better privacy, but the exact 
privacy analysis is out of the scope of this paper. 

7.3 Secure protocols 

Secure protocols compute the functionality without 
revealing more information than is revealed in the ideal 
scenario. We first describe in brief a protocol for the first 
ideal scenario. We then focus on protocols for the second 
and third scenarios, since the first protocol requires  
large communication and computation overheads as the 
parties must apply cryptographic operations to the entire 
documents. Note that even Broder et al.’s insecure protocol 
is based on sampling the documents in order to reduce the 
overhead of the protocol. 

We describe protocols which compute similarity 
between a pair documents. Section 7.4 discusses the 
comparison of two sets of documents, looking for any pair 
of similar documents that appear in both sets. Instead of 
requiring the parties to compute O(N2) comparisons (for sets 
of N documents), it suggests a more efficient protocol, 
based on hashing into bins, which computes only O(N) 
comparisons. 

7.3.1 Protocols for ideal scenario 1 

Using the full documents. If no sampling is done then the 
protocol must compare the complete two sets of shingles 
and output 1 if the size of their intersection is greater than 
some threshold. This is exactly the task computed by the 
private matching for cardinality threshold protocol of 
Freedman et al. (2004) and therefore we could simply apply 
this protocol to the shingle sets of the two parties. The 
protocol requires computing a constant number of 
homomorphic encryption operations for each shingle, and 
computing a 1-out-of-2 oblivious transfer for each bit of the 
representation of the shingle values (needed for computing a 
Yao circuit). This results in at least mlogm 2

1OT s,  for inputs 
of m shingles. This overhead is almost linear, but the size of 
the input here, m, is pretty large, since no sampling is 
applied to the documents. 

It is possible to relax the privacy requirements of the 
protocol and enable it to output the size of the intersection 
instead of evaluating whether the size of intersection is 
larger than a threshold. In this case, the protocol can be 
implemented using a set intersection protocol, which 
computes the size of the intersection of two sets known to 
the two parties (rather than computing the cardinality 
threshold, which is a more complex operation). Two known 
protocols for set intersection are that of Huberman et al. 

(1999) [also described and analysed by Agrawal et al. 
(2003)], and that of Freedman et al. (2004). The former was 
proved to be secure only in the random oracle model, 
whereas the latter was proved in the standard model. 

7.3.2 A protocol for ideal scenario 2 – sampling by 
parties 

The protocol consists of a sampling step and a computation 
step. First, the parties agree on n Min-wise independent 
permutations. Then, each party samples its document by 
itself using these n permutations, as described in  
Section 7.1.3. The last step computes similarity, that is, 
outputs 1 if the number of equal pairs is at least τ (where  
0 ≤ τ ≤ n is a parameter). This is done by representing the 
output of the n permutations as an n-letter word, defined 
over an alphabet sufficiently large to contain the fingerprint 
of the sampled shingles. Then the threshold protocol, 

| |
1,0HDOT ( ,  '),W τ W W−  is run, where W and W′ are the words 

representing the sets of shingles sampled by the 
permutations from 1 2,  ,D D  respectively, and the protocol 
outputs 1 if the Hamming distance is at most |W| – τ. (This 
protocol is defined in Section 4.1 as one of the 
straightforward applications of HDOT.) 

7.3.3 A protocol for scenario 3 – obscured sampling 
by the parties 

As was discussed earlier, the previous protocol simulates a 
setting where the TTP reveals to the parties the identities of 
the sampled values that are used for computing similarity. 
This privacy leakage might be somewhat reduced by letting 
each party sample first a large set of elements (which it 
knows), and then use a random subset of these elements for 
evaluating similarity while keeping this subset hidden from 
the other party. This approach is implemented by the 
protocol described in Figure 4. The protocol uses an 
additional parameter, k, (k > 1). Each party samples kn 
words from its set, but only n of these words take part in the 
final evaluation. 

The protocol starts with each party sampling kn shingles 
from its document, where both parties use the same set of 
permutations for this task. Next, the parties compute 
together a random list of kn homomorphic encryptions of 
values α0, …, αk·n–1, of which n are encryptions of 1 and the 
rest are encryptions of 0 (but no single party knows which 
encryptions are of which value). They then execute an 

0 1,EQV V  protocol (of Section 4.1) for each of the kn pairs of 
words. For each of these executions 2P  chooses a random 
value ri. 1P  learns the value 1 i ir= +V α  if the words are 
equal, and if they are different it learns the value 0 .ir=V  As 
a result, the equality of input words only affects the results 
of the n pairs which correspond to the αi values which equal 
1. The two parties then run an oblivious transfer protocol 
(similar to the one used in the last step of HDOT protocol) 
to compute the output of the protocol. The protocol is 
detailed in Figure 4. 



 Secure computation of functionalities based on Hamming distance and its application to computing document 37 

The proof of correctness is similar to that of the HDOT 
protocol. The overhead of the protocol is about the same as 
that of the document similarity protocol for scenario 2, 
when that protocol is run with a sample size of k · n. 
(Namely, the usage of a parameter k > 1 increases the 
overhead by a factor of k compared to the previous protocol. 
There is a smooth transition from the protocol of scenario 2, 
which corresponds to setting k = 1, to the protocol of 
scenario 3 which uses k > 1.) This observation was verified 
in the experiments we conducted, detailed in Section 7.5. 
More precisely, 1P  performs nkℓ homomorphic encryptions 
and nk decryptions, and 2P  performs 2nkℓ encryptions. The 
parties also run nk log(ℓ + 1) 2

1OT s.  The communication 
consists of O(nkℓ) encrypted items. The security analysis is 
similar to that of the previous protocol. 

7.4 Comparing many documents 

We have introduced protocols that compute similarity 
between two documents, but in many scenarios each party 

has a set of documents and the parties wish to identify any 
pair of similar documents (this is indeed the case of the 
problem encountered by the programme committees, that 
was the motivation of our research). Let us assume that each 
party (committee) has n documents to compare with the 
other party. A naive solution is to compare each pair of 
documents of the two parties and execute the similarity 
protocol n2 times. We would like to reduce this overhead. 

The number of executions of the similarity protocol can 
be indeed reduced if the parties compare only documents 
which are likely to be similar. This can be done by mapping 
documents to different ‘bins’ such that similar documents 
are mapped to the same bin by both parties. In this case, it is 
required only to compare the documents that are mapped to 
a certain bin by the first party with documents mapped to 
the same bin by the second party. Naturally, we must make 
sure that no information about the documents is leaked or 
revealed by the mapping to the bins. 

Figure 4 The similarity protocol for ideal scenario 3 

( ):
0 1 1 0 1 1Similarity ,, , ..., , , ...,k n

τ kn knw w w w w w− −′ ′ ′  

Input: 1P  has an input 〈w0, w1, …, wkn–1〉; 2P  has an input 0 1 1 ,, , ..., knw w w −′ ′ ′  and both parties agree on a threshold τ. 

Output: The protocol chooses at random a set of n of the kn words. 1P  receives 1 if the number of equal words among these is at least τ, 
otherwise it receives 0; 2P  does not learn any output. 

1P  knows the decryption key to a homomorphic encryption scheme Epk. 

 1 1P  sends to 2P  n homomorphic encryptions of 1, and (k – 1)n homomorphic encryptions of 0, ordered randomly. 

 2 2P  receives these kn encryptions and randomises their order. Call the resulting encryptions Epk(α0), …, Epk(αkn–1). 

  Note that these two steps can be performed before the parties receive their inputs. 
 3 For i ← 0 to (kn – 1) 
  2P  chooses a random value ,i Rr ∈ F  computes Epk(ri) and Epk(ri + αi), and both parties execute the protocol 

( ), ( ) ( ,  ).pk i i pk iE r E r i iEQ w w+ ′α  In this protocol 1P  learns Epk(ri + αi) if ,i iw w′=  and learns Epk(ri) otherwise. 

  At the end of this step, 1P  obtains the values {E(β0), …, E(βkn–1)}, where 

,

1

or 0
, and 1

i i i i
i

i i i i

r w w
r w w+

′≠ =⎧
= ⎨ ′= =⎩

α
β

α
 

  (Note that the equality of the inputs affects the value of βi only when αi = 1.) 
 4 

2P  sums the r values modulo n + 1 to obtain 
1

0
mod( 1).

kn
r iσ r n

−
= +∑  

 5 
1P  sums the β values and decrypts the result to obtain 

1

0
mod( 1).

kn
iσ n

−
= +∑β β  (Note that this value is equal to σr plus the 

number of indices i in which i iw w′=  and αi = 1.) 

 6 Both parties execute an 1
1OTn+  protocol with the following inputs: 

  • 1P  is the receiver and its input is σβ mod (n + 1). 

  • 2P  is the sender and its input is {X0, …, Xτ–1, Xτ, …, Xn–1, Xn} such that 

( )1, if mod( 1)
0, Otherwise                     

r
i

n τi σ
X

+ ≥⎧ −
= ⎨
⎩

 

 1P  receives the result of the OT protocol; 2P  does not receive any output. 
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To categorise the documents we search for distinctive 
properties that are likely to be the same for two version of a 
paper submitted to two conferences. In the programme 
committee example we can assume that the set of authors of 
a paper has not changed, and it is therefore possible to use 
an ordered list of the names of authors of each document as 
a distinctive property. (If we suspect that authors may add 
spurious names to their document, it is possible to use each 
author name as a separate index and map a document with ℓ 
authors to ℓ different bins.) The mapping to bins is 
performed using a random hash function with a range of 
size B, applied to the set of authors of each paper. It has 
been shown (Freedman et al., 2004) that if the hash function 
maps each item to a random bin there is a high probability 
(over the selection of the hash function) that each  
bin contains at most / ( ( / ) log log )M n B n B B B= + +O  
elements (see, e.g., Freedman et al., 2004). 

After mapping the documents to the bins, both parties 
need only compare the documents that have been 
categorised to the same bin by both of them. It is important 
that no party learns the number of the documents in each of 
the bins of the other party; to ensure this, each party must 
add several random documents to each of its bins such that 
the number of documents in each bin is exactly M = n / B + 

( ( / ) log log ).n B B B+O  

Overhead. After mapping the documents to bins, the  
parties need to compare the documents that are mapped to 
the same bin by both parties. Therefore, the total  
number of comparisons between documents is B · M2 = B · 

2( / ( ( / ) log log )) .n B n B B B+ +O  If we choose B to be n / 
log n, the similarity protocol is executed ( log )n nO  times. 
This analysis is asymptotic. For specific values of n, the 
parties should search for the value of B that produces the 
best overhead. 

7.5 Implementation and experiments 

Configuration. We implemented the document similarity 
protocol using Java 1.5. The experiments used the following 
settings: 

1 Homomorphic encryption was done using Paillier’s 
method, with a ring Zn of size 1,024 bits 

2 the sizes of the parameters p and q for the OT protocol 
[based on the Bellare-Micali construction (Bellare and 
Micali, 1990)] were 1,024 and 160 bits, respectively 

3 the shingle size was seven letters 

4 we used Rabin’s algorithm to generate a fingerprint of 
32 bits, but only 31 bits were utilised (the ideal size of 
the words should be 2d – 1, for any d). 

The experiments were performed using two machines, each 
with a 2.8 GHz Pentium D processors and 1 GB of RAM, 
running the Linux OS. 

Results. We used two PDF files, with a similarity of about 
85%. Each file contained about 9,500 words in 35 pages. 
Sampling was performed where the sample size was n = 15, 
31, 63, …, 255, and the privacy parameter was k = 1, 2, …, 
8. 

Figure 5 shows the runtime of the protocol for ideal 
scenario 2 (where k = 1, or running HDOT protocol). The 
points represent the total runtime of the protocol, as we can 
see, the graph is linear in the size of the sample n. Figure 6 
presents the runtime of the protocol for ideal scenario 3 (for 
n = 255 and k = 1, …, 8), where the bars represent the 
runtime spent on running binHDOT invocations, namely, 
runtime spent on comparing binary words, and the points 
represent the total runtime spent in each execution of the 
protocol. The graph is linear in k and demonstrates that most 
of the runtime is spent on comparing words (note that the 
bars are very close to the line.) Both graphs agree with the 
observation that the runtime is linear in the size of the 
samples. 

Figure 5 Run time of HDOT 
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Analysing the runtime of the different parts of the protocol 
reveals that, on average, comparing two 31-bit words  
(ℓ = 31) took 568 msec, where 24 msec were spent counting 
equal bits and 540 msec were spent on the OT protocol. The 
first item corresponds to ℓ homomorphic additions, and the 
second to 5 = log(ℓ + 1) OTs executed one after the other, 
with an average time of about 110 msec per OT. In the 
preprocessing step, each homomorphic encryption took 
about 7msec. This observation shows that the overhead of 
OT (which involves communication between the parties) is 
much larger than that of a homomorphic encryption. Note 
also that with a running time of about 0.56 sec for 
comparing every pair of words, the overall running time of 
the protocol, which compares a few hundred words, is 
reasonable, although not instantaneous. 
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Notes 
1 The full simulation definition is preferable to the so called 

‘semi-simulatable security’ definition, which only guarantees 
privacy, but not correctness, in the malicious case. That 
definition was commonly used for two-party protocols such 
as oblivious transfer and PIR. It does not enable, however, to 
use the composition theorem in order to model the resulting 
building-block protocols as simple calls to a trusted oracle. 
There are recent efficient constructions of generic protocols 
which are secure according to this definition (by Lindell and 
Pinkas, 2007; Jarecki and Shmatikov, 2007), and there are 
even implementations of the former protocol (Lindell et al., 
2008; Pinkas et al., 2009). 

2 For example, the protocol in Indyk and Woodruff (2006) 
applies the Naor-Nissim (Naor and Nissim, 2001) protocol to 
a circuit which computes vector operations over the Real 
numbers and samples from a Bernoulli distribution; in 
addition it uses symmetric PIR protocols. 

3 In Blake and Kolesnikov (2006), it was shown how to 
implement a protocol which transfers one of two strings if  
w > w′, and transfers the other string if w < w′ (if w = w′ the 
output is random). It is possible to compute the EQ 
functionality by combining that protocol with a protocol 
which outputs a specific value if w = w′ and a random value 
otherwise. 

4 After the first step of the protocol the sender has ℓ 
homomorphic encryptions, one for each letter location, which 
are each equal to 0 or 1 depending on whether the letters in 
that location are identical. This is essentially the data that the 
receiver sends to the sender in many PIR protocols (e.g., 
Stern, 1998; Chang, 2004; Gentry and Ramzan , 2005 
Lipmaa, 2005) where the receiver sends encryptions of the 
bits of its input. Therefore, it seems natural to use here one of 
these protocols and perhaps remove one communication 
round from the protocol. However, these PIR protocols were 
designed for a setting where the server has a database of size 
2ℓ, whereas the range of possible outputs of our protocol 
contains only ℓ + 1 values. As a result our protocol can use a 
1-out-of-(ℓ + 1) OT which is more efficient in terms of both 
computation and communication. 

5 The COTCD protocol is identical to the Jarecki and 
Shmatikov (JS) (2007) protocol, with an addition of a 
preliminary step and a verification step. In the preliminary 
step, both parties receive their auxiliary inputs: the sender 
receives a value Δ, which is the difference that must hold 
between its input values, and the receiver receives the 
committed value of Δ. In the verification step the sender 
proves to the receiver in zero-knowledge that the committed 
values, m0, m1, have a difference ±Δ. It is important to note 
that the receiver knows only Com(Δ) and does not learn Δ. 

Appendix 

A committed oblivious transfer with constant 
difference 

In this Appendix, we describe a protocol, ‘COTCD’, which 
is used as a black box in our binHDOT protocol. The 
protocol performs the following operations: 

• Input: The sender SP  has an auxiliary input Δ, and the 
receiver RP  has a commitment of this value, Com(Δ). In 
addition, the sender has as input two values (m0, m1) 
satisfying |m0 – m1| = Δ, and the receiver has an input  
σ ∈ {0, 1}. 

• Output: The receiver learns mσ. In addition, SP  proves 
to RP  that its input (m0, m1) has a difference that is 
equal to ± Δ, namely that |m0 – m1| = Δ. 

The protocol is similar to committed OT, i.e., to an OT 
protocol where the parties commit to their inputs, each party 
sends its commitments to the other party, and each party 
verifies that the other party’s values are equal to the 
committed values. In addition, the protocol has an 
additional auxiliary input Δ known to the sender, and a 
commitment to Δ which is known to the receiver. The 
protocol ensures that the difference between the two inputs 
of the sender is equal to ± Δ. 

We construct the protocol based on the Jarecki and 
Shmatikov (2007) committed OT protocol, which is secure 
against malicious adversaries and is UC-secure in the 
common reference string model under the DCR assumption 
(which is also the assumption used to argue about the 
security of Paillier encryption). The commitment scheme of 
the protocol is based on the CS encryption scheme 
(Camenisch and Shoup, 2003), which is, essentially, a 
semantically secure homomorphic cryptosystem. The 
homomorphism property is used by our protocol to prove 
that the difference between the inputs is as required. 

We base our construction on the same steps as those of 
the Jarecki and Shmatikov (JS) (2007) protocol, where we 
add a preliminary step and a verification step. In the 
preliminary step, both parties receive their auxiliary inputs: 
the sender receives a value Δ, which is the difference 
between its input values, and the receiver receives the 
committed value of Δ. In the verification step, the sender 
proves to the receiver that the committed values, (m0, m1), 
have a difference of exactly ± Δ. It is important to note that 
the receiver knows only Com(Δ) and does not know Δ. 
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To sum up, the main changes we make to the JS the 
protocol are the following: 

1 Before starting the protocol, SP  receives Δ while RP  
receives the commitment of Δ. 

2 Before the third step of the protocol, where the receiver 
learns one of the sender’s inputs, the receiver checks 

whether ?
0 1| | .m m− =Δ  Since RP  has the committed 

values only, SP  proves to RP  in zero-knowledge that 
the committed values satisfy this relation. 

We start by introducing the tools and notations of the 
protocol, describing the ideal functionality implemented by 
the protocol in Figure 7 and them describe the protocol 
itself in Figure 8. 

A.1 Cryptographic tools and notations 

The protocol is based on the same steps as the Jarecki and 
Shmatikov (JS) protocol, and uses the same cryptographic 
notation, primitives and tools, which we brie 
y review here. 

A.1.1 Camenish-Shoup (CS) encryption scheme 

The CS encryption scheme (Camenisch and Shoup, 2003) is 
defined as follows. 

Common reference string (CRS). A TTP generates a safe 
RSA modulus n = pq, where p = 2p′ + 1, q = 2q + 1, |p| = 
|q|, p ≠ q and p, q, p′, q′ are all primes. In addition it 
generates random element 2

*
ng ′∈  and an element g = 

(g′)2n. The common reference string is (n, g), which also 
defines an element α = 1 + n. Also, we treat all 
multiplications and exponentiations as operation in 2

* .n  
It is possible to replace the common reference string by 

a secure computation by the two parties which calculates the 
values defined (n, g) by the string. This computation, secure 
against malicious adversaries, can be done using the results 
of Blackburn et al. (1998) or of Poupard and Stern (1998). 

Key generation. The private key is a random triple x1, x2, x3 
∈ 2

4 .0,  n⎡ ⎤⎣ ⎦  The public key is PK = (n, g, γ, ,  φ, hk)  

where 1 2 3,  ,  x x xγ g g g += = =φ  and hk is a key of a 
colision-resistant keyed hash function .H  

Encryption. Consider a plaintext 2, .n n
nm ⎡ ⎤∈ −⎣ ⎦  A CS 

encryption of m with PK and label L, which is denoted 
( )L

PK mCSenc  is a tuple (u, e, v), where u = gr, e = αmγr and 
( , , )(( ) ),u e L rv abs= Hφ hk  for 1 2( / ) .xe u  ((abs(a) = a if 2

na <  

and n – a if 2 .)na ≥  

Decryption. For a ciphertext (u, e, v), if abs(v) = v and 
2 32( ( , , ) ) 2 ,x u e L xu v+ =Hhk  then compute 1 2( / ) .xm e u=  If n 

does not divide 1,m −  then reject; Otherwise compute 

1m
nm −′ =  (over the integers), / 2modm m n′ ′=  and m = m′ 

rem n. 

A.1.2 Simplified Camenish-Shoup (sCS) (2007) 
encryption scheme  

Jarecki and Shmatikov (2007) proposed a homomorphic, 
semantically secure variant of CS cryptosystem (Camenisch 
and Shoup, 2003), which uses a shorter key and allows 
efficient proofs that a committed plaintext is encrypted 
under a committed key. This variant is denoted sCS. 

The group setting (n, g) is the same, and k, k′ are 
parameters that control the quality of the soundness and 
zero-knowledge properties of proof systems associated with 
the sCS encryption. Let | |

2 .nk ′′ =  The sCS scheme requires 
that 2k + k′ < k″ and k < p′, q′. 

Key generation. The private key is x ∈ [0, 2k″] and the 
public key is y = gx. 

Encryption. The encryption of m with public key y is 
sCSency(m) = (u, e), where u = gr and e = αmyr, 4 .0, n

Rr ⎡ ⎤∈ ⎣ ⎦  

The encryption result is in 2 2 .,n n⎡ ⎤−⎣ ⎦  

Decryption. The decryption process is the same as in CS 
decryption, but omitting the CCA checks on v and using x 
instead of x′ in decrypting (u, e). 

A.1.3 Commitments 

Similar to the JS protocol, we use the CS and sCS 
encryption scheme as a commitment scheme, where  
PK = (n, g, γ, ,  φ, hk) is a public key which is chosen by a 
TTP and the security of the commitment scheme requires 
the CRS model. The commitment on message m is simply 
its encryption ( ),L

PK m=Com Csenc  and the decommitment 
is the tuple (r, m, L) used to generate this encryption. 

A.1.4 Efficient concurrently secure ZK proof 
systems in the CRS model 

We use in our COTCD protocol ZK proofs of knowledge in 
the CRS model, which are described in the JS paper (2007). 
The proof systems are three-round honest verifier  
zero-knowledge (HVZK) proof systems, and are 
computationally sound and statistical zero-knowledge with 
a straight line simulator. They can be used together with the 
compilation technique of Cramer et al. (1994) in order to 
generate proofs with similar properties for any disjunctive 
and conjunctive formula of the atomic statements 
expressible by such proofs. We use the following proof 
systems: 

• {( , , , ) |g X g X=DLEQ  there exists x such that 
2 2xX g=  and 2 2 }.xX g=  Namely, this is a proof of 

the equality of the discrete logarithms of X and X  to 
the bases g and ,g  respectively. (This proof is a 
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straightforward adaptation to the setting of group 2
*
n  

of the standard proof for equality of discrete 
logarithms.) 

• Cot = {(i, e′, u′, e, u, y, C)| there exist m, w, s, r such 
that C2 = α2mγ2w, e′2 = e2eα2m–i*2sy2r, and u′2 = u2sy2r}. In 
other words, m is committed in the sCS commitment C, 
and (u′, e′) is a correct re-encryption of m (performed 
by the sender in the COTCD protocol), given the (y, u, 
e) tuple sent by the receiver. [This proof system was 
described in Jarecki and Shmatikov (2007) where it was 
denoted Cot, and is an adaptation of the proof systems 
presented in Camenisch and Shoup (2003).] 

• Com = {(Com, ids)} there exist m, r s.t. Com = (u, C, v) 
where u = gr, C = αmγr, and ( , , )( ) }.u C rv = Hφ hk ids  In 
other words, Com is a properly formed CS commitment 
to some message m with label ids. [This proof is a 
straightforward simplification of the verifiable 
encryption proof system of the CS scheme in 
Camenisch and Shoup (2003).] 

A.2 The COTCD functionality 

The ideal functionality implemented by the COTCD 
protocol is described in Figure 7. It is similar to the 
committed OT functionality of JS defined in Jarecki and 
Shmatikov (2007), but in addition it requires that the 
difference between the two server inputs is ±Δ. The protocol 
implementing the COTCD functionality is described in 
Figure 8 below. It is almost identical to the committed OT 
protocol of Jarecki and Shmatikov (2007), with the addition 
of a commitment to Δ, and a verification step which checks 
that the inputs have a difference of ±Δ. (This step is 
highlighted in the protocol below.) 

The proof of security is similar to that of the committed 
OT protocol in Jarecki and Shmatikov (2007). The proofs in 
the verification step can be run in parallel to Step 2 and 
therefore the number of rounds remains as in the JS 
protocol. 

Jarecki and Shmatikov (2007)presented the crucial 
aspects of the proof and the idea behind it, we provide a 
proof of security of the protocol including our changes. 

Theorem 5: The protocol securely computes COTCD in the 
presence of malicious adversaries. 

Proof: As in Jarecki and Shmatikov (2007), we prove the 
security of the protocol using simulator in the hybrid model, 
assuming that zero-knowledge proofs are performed by a 
trusted oracle (or party). The simulator acts as an honest 
party and executes the protocol against malicious parties 
with random inputs, such that, it simulates the execution in 
order to learn the input of the other party. 

We compare the execution of the protocol between both 
parties to an execution with a TTP, where TTP executes the 
functionality introduced in Figure 7. 

SP  is corrupted. The idea of the proof is extracting the 
input of SP  by the simulator. The simulator plays as an 

honest ,RP  in addition, it plays a trusted oracle that chooses 
the CS public key, PK, which is embedded in the CRS and 
learns both inputs of .SP  Sim chooses PK such it knows 
SK, CS private key, in order to decrypt the commitments of 

.A  Finally, it sends both inputs to the TTP. Since CS 
encryption scheme is semantically secure, SP  cannot learn 
the input of RP  or distinguish between real simulation and 
real execution of the protocol. 

More formally, let A  be an adversary controlling ,SP  
we construct a simulator, Sim, that generates the view of 
both parties, A  and ,RP  in the hybrid model, given only 
access to A  and to the ideal model. 

Also, we assume that Sim 

• Plays in the beginning of the protocol a trusted oracle, 
chooses (SK, PK) of CS encryption scheme and sends 
PK to .A  

• Receives cidΔ = ComΔ. 

1 Simulation of Commit, Sim receives from A  the 
following: 

( )
( )

,0 0

,1 1

,, ,

, ,

m

m

A A A

A A A

ComMsg ids Com

ComMsg ids Com
 

 In addition, Sim chooses randomly σSim ∈R {0, 1}, 
simulates an honest RP  and sends ComMsgSim, idsSim, 
ComSim. 

2 Simulation of COTCD Step 1, Sim acts as an honest 
,RP  

• Sets idsSim = ( ,A  Sim, sid, cidΔ, cidSim, 

,0 ,1,  )cid cidA A  

• Retrieves ComSim = (u, C, v) and its decommitment 
r. 

 As in the protocol, it sends to A  the following, 
COTCDMsg1Sim, idsSim, (u, e, y). 

 Sim acts as an honest ,RP  performs the same steps, 
where by the end of the step, Sim runs zero-knowledge 
proof of ZKDLEQ(g, u, γ, y, C/e) ∧ ZKCom(PK, 
ComSim, (Sim, cidSim)), with A  as the verifier. 

3 Simulation of COTCD Step 2, as previous steps, Sim 
acts an honest ,RP  retrieves both commitments of m0, 
m1, which committed by .A  Sim plays as the verifier in 
the zero-knowledge proof of ZKCot(0, e0, u0, e, u, y, 
C0) ∧ ZKCot(1, e1, u1, e, u, y, C1) ∧ ZKCom 

,0 ,1( , , ))cidA AACom  ∧ ZKCom ,1 ,1( , , )).cidA AACom  
If Sim does not accept the proofs, it sends ⊥ to the 
trusted party and halts. 

 Otherwise, Sim proceeds in the execution of the 
protocol. 

4 Simulation of verification step. Sim computes  
Com(m0 – m1) and Com(m1 – m0), using homomorphic 
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properties of CS scheme. Sim plays as the verifier in 
the zero-knowledge proof of ZKCot(1, e0/e1, u0/u1, e, u, 
y, CΔ) ∨ ZKCot(1, e1/e0, u1/u0, e, u, y, CΔ). If Sim does 
not accept the proofs, it sends ⊥ to the trusted party 

and halts. 

 Otherwise, if Sim accepts the proofs, extracts m0, m1 
from the commitments since it knows the private SK of 
CS encryption scheme. 
• If in any step, A  sends ⊥ or fail in verifying in the 

zero-knowledge proofs, Sim sends ⊥ to the trusted 
party and halts the execution. 

• If Sim learns the inputs of ,A  namely, A  does 
not cheat, Sim sends to the trusted party m0, m1, 
outputs whatever A  outputs and halts. 

After showing the simulation, where Sim learns the input of 
A  (or ),SP  we show that the joint output distribution of A  
and SP  in the hybrid model protocol execution is 
indistinguishable from the output of Sim and SP  in the ideal 
world simulation. 

In any step, A  could send ⊥ to Sim, namely, terminates 
its execution in the protocol, this could happen in any step 
of the execution of the protocol and as in hybrid model, 
where Sim terminates its running, the protocol also 
terminates and A  does not learn any information. 

In COTCT Step 2 and verification step, A  has to proof 
using zero-knowledge to Sim the correctness of its 
commitments, if Sim does not accept the proofs, it 
terminates its running, as in the hybrid model execution, the 
protocol terminates and A  does not learn any information. 

RP  is corrupted. As previous proof, the idea is learning the 
input of RP  such that it does not distinguish between 
simulation and real executions of the protocol. Sim extracts 
the input of RP  from the commitment which is provided by 

,A  since it plays as trusted oracle, chooses the public key 
PK such it knows the private key SK of CS encryption 
scheme, learns the appropriate value of SP  from TTP and 
sends it to .A  

More formally, let A  be an adversary controlling ,RP  
we construct a simulator, Sim, that generates the view of 
both parties, A  and ,SP  in the hybrid model, given only 
access to A  and to the ideal model. 

Also, in this simulation, we assume that Sim: 

• Knows Δ 

• Plays in the beginning of the protocol a trusted oracle, 
chooses (SK, PK) of CS encryption scheme and sends 
PK to .A  

1 Simulation of Commit, Sim receives from 
., , ( )σA A AA ComMsg ids Com  Sim extracts ,σA  the 

input of ,A  since it knows SK and can decrypt the 
commitment of ,A  sends σA  to the trusted party and 
leanrs .σm m= A  

2 Sim continues in the simulation of Commit, chooses 
two messages Sim Sim

0 1,  ,m m  such that Sim
σm m=
A

 and 
Sim
1 σm m− = + Δ

A
 and sends A  two commitments of the 

messages as in Commit step. 

3 Simulation of COTCD Step 1, Sim receives 
, , ( , , )u e yA A ACOTCDMsg1 ids  from A  and plays 

the verifier in the zero-knowledge proof of ZKDLEQ(g, 
u, γ, y, C/e) ∧ ZKCom(PK, , ( , )).cidA AACom  

 If Sim did not accept the proof, it terminates the 
execution of the protocol and send ⊥ to the trusted 
party. Otherwise, proceeds in the protocol. 

• As previous simulation, if in any step, A  sends ⊥ or 
fail in verifying in the zero-knowledge proofs, Sim 
sends ⊥ to the trusted party and halts the execution. 

• If Sim learns the inputs of ,A  it outputs whatever A  
outputs and halts. 

As previous, we show that the joint output distribution of 
A  and SP  in the hybrid model protocol execution is 
indistinguishable from the output of Sim and RP  in the 
ideal world simulation. 

In any step, A  could send ⊥ to Sim, namely, terminates 
its execution in the protocol, this could happen in any step 
of the execution of the protocol and as in hybrid model, 
where Sim terminates its running, the protocol also 
terminates and A  does not learn any information. 

In COTCT Step 1, A  has to proof using  
zero-knowledge to Sim the correctness of its commitment, if 
Sim does not accept the proofs, it terminates its running, as 
in the hybrid model execution, the protocol terminates and 
A  does not learn any information. � 
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Figure 6 Run time of :Similarityk n
τ  and binHDOT 

 

Figure 7 COTCD ideal functionality 

Input: RP  and SP  receives their inputs to the ,  COTCD RF P  receives σ ∈ {0, 1} and SP  receives m0, m1. 

Additionally, they receive auxiliary inputs, RP  receives Com(Δ) and SP  receives Δ and checks that |m0 – m1| = Δ. 

 

Commit: Upon receiving a , ( , ),i cis mPComMsg  message from ,  i COTCDP F  records the (( , ), )i cid mP  pair and broadcasts 

., ( , ),i cid mPCommitted  Here m can be either a message in the prescribe message space or a special symbol ⊥. 

 

StartCOT: Upon receiving ,0 ,1, ( , , , , , , )S R R S Smsg sid cid cid cid cidΔ= P PStartCOTCD  from ,  S COTCDP F  verifies that it has 

records ,0 ,0 ,1 ,1(( , ), ), (( , ), ), (( , ), ), (( , ), ).R R R S S S S S S Scid m cid m cid m cidΔ ΔP P P P  It, also, checks that |m0 – m1| = Δ and that, m ≠ ⊥. If this 
fails, COTCDF  ignores this message; Otherwise, COTCDF  records msg and forward it to .SP  

 

CompleteCOTCD: Upon receiving ,0 ,1, ( , , , , , , )S R R S Ssid cid cid cid cidΔP PCompleteCOTCD  from ,  S COTCDP F  verifies that it has a 

record 〈StartCOTCD, ids〉, where ,0 ,1( , , , , , , ).S R R S Ssid cid cid cid cidΔ= P Pids  COTCDF  looks up records ,0 ,0(( , ), ),S S Scid mP  

,1 ,1(( , ), )S S Scid mP  and (( , ), ),S cidΔ ΔP  and checks: 

 • mS,0 ≠ ⊥ 
 • mS,1 ≠ ⊥ 
 • |mS,0 – mS,1| = Δ, a verification step to the difference between the messages. 

If anything fails, COTCDF  ignores this message. 

Otherwise COTCDF  looks up the record ( , ), ).R R Rcid mP  If m ∉ {0, 1}, COTCDF  sends a special message , , ,S R sidP PCOTCDFailed  to 

.RP  Otherwise COTCDF  sends ,, , ( , )S bm bCompleteCOTCD ids  to RP  for b = m=. 
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Figure 8 Protocol COTCD, for committed OT with constant difference 

Common reference string: A committed instance of the public key of t he CS encryption scheme PK = (n, g, γ, ,  φ; hk). 

 

Auxiliary input: SP  receives Δ and RP  receives a commitment ComΔ which is indexed by an identifier cidΔ (in our application the 
parties will invoke this protocol many times, and use the same Δ value and commitment in all these invocations). 
 

Input: ’sSP  input contains two messages (m0, m1), where |m0 – m1| = Δ, and m0, m1, 2 .0, n⎡ ⎤Δ∈ ⎣ ⎦  ’sRP  input is σ ∈ {0, 1}. 

 

Output: RP  learns mσ while SP  does not learn any information. 

 

Commit: For player ,iP  on commitment instance cid and message m: Player iP  sets ( , ), ( ),i Pkcid m= =P idsids Com CSenc  and broadcasts 
〈ComMsg, ids, Com〉. 
 
Protocol execution: Receiver RP  executes a COTCD instance sid with sender .SP  ’sRP  bit σ is committed in ComR, ’sSP  messages 
m0, m1 are committed in ComS,0, ComS,1. Let cidR, cidS,0, cidS,1 be the identifiers for these commitments. 
 

COTCD Step 1: RP  sets ,0 ,1( , , , , , , ),S R R S Ssid cid cid cid cidΔ= P Pids  retrieves ( , , )R u C v=Com  and its decommitment 4 .0, nr ⎡ ⎤∈ ⎣ ⎦  

Note that C = ασγr. RP  picks 4 ,0, nx ⎡ ⎤∈ ⎣ ⎦  and computes 

, ,x r σ ry g u g e y= = =α  

RP  sends 〈COTCDMsg1, ids, (u, e, y) 〉 to ,SP  and runs the proof system ZKDLEQ(g, u, γ, y, C/e) ∧ ( , , ( , ))R R RPK cidPZKCom Com  
with ,SP  where it operates as the prover. 

 
COTCD Step 2: After receiving 〈COTCDMsg1, ids, (u, e, y) 〉 which was sent to SP  from ,RP  SP  retrieves messages m0, m1 
committed in 0 0 0 0( , , )S u C v=Com  and 1 1 1 1( , , ).S u C v=Com  Note that i mii m rC σ γ=  for some .imr  SP  creates two ‘COTCD-encryptions’ 
for i = 0; 1: 

* andi i i i i is m i s r s r
i ie e y u u g−= =α  

using random even values si ∈ [0, 2n] and 2 .0, n
ir ⎡ ⎤∈ ⎣ ⎦  If RP  passed its proof in Step 1, sP  sends message 〈COTCDMsg2, ids, (u0, e0, u1, 

e1)〉 to ,RP  and performs, with RP  as the verifier, a proof that ZKCot(0, e0, u0, e, u, y, C0) ∧ ZKCot(1, e1, u1, e, u, y, C1) ∧ 

0 1,0 ,1( , ( , )) ( , ( , )).S S S S S SP cid P cid∧ZKCom Com ZKCom Com  

 
Verification step: In addition, the parties run the following step to verify that the difference between m0 and m1 is ±Δ. This is the main 
part in which the protocol is different from the protocol in Jarecki and Shmatikov (2007). 

RP  computes two commitments, Com(m0 – m1) and Com(m1 – m0), by using the homomorphic properties of the CS scheme and 
computing Com(m0)/Com(m1) and Com(m1)/Com(m0) (namely, RP  computes (e0/e1, u0/u1) and (e1/e0, u1/u0)). 

SP  performs, with RP  as the verifier, a proof that one of these two commitments is a commitment to Δ. Namely, SP  proves that 
ZKCot(1, e0/e1, u0/u1, e, u, y, CΔ) ∨ ZKCot(1, e1/e0, u1/u0, e, u, y, CΔ). 

If SP  passes its verification of the zero-knowledge proofs both parties continue to Step 3; Otherwise, RP  rejects. 

 
COTCD Step 3: RP  decrypts the sCS ciphertext (uσ, eσ) and obtains mσ. If SP  passed its proof in Step 2, then RP  outputs mσ; 
Otherwise RP  rejects. 

 
Comment: We have considered simplifying the steps of the protocol by removing the proof that the commitments to m0 and m1 are 
properly formed (namely the proof in Step 2 that 0 1,0 ,1( , ( , )) ( , ( , )).S S S S S SP cid P cid∧ZKCom Com ZKCom Com  After all, we are not 
interested in the sender committing to these values but rather in ensuring that the difference of these values is ±Δ. We cannot do that, 
however, since removing these proofs might enable the sender to commit to two random values that have a difference of Δ but are 
otherwise unknown to the sender. 

 
 


