
Int. J. Applied Cryptography, Vol. 3, No. 1, 2013 21

Copyright © 2013 Inderscience Enterprises Ltd.

Secure computation of functionalities based on
Hamming distance and its application to computing
document similarity

Ayman Jarrous
Department of Computer Sciences,
University of Haifa,
Mount Carmel, Haifa 31905, Israel
E-mail: ayman@jarrous.net

Benny Pinkas*
Department of Computer Science,
Bar Ilan University,
Ramat-Gan 52900, Israel
E-mail: benny@pinkas.net
*Corresponding author

Abstract: This paper examines secure two-party computation of functions, which depend only
on the Hamming distance of the inputs of the two parties. We present efficient protocols for
computing these functions. In particular, we present protocols which are secure in the sense of
full simulatability against malicious adversaries. We then show applications of HDOT. These
include protocols for checking similarity between documents without disclosing additional
information about them (these protocols are based on algorithms of Broder et al. for computing
document similarity based on the Jaccard measure). Another application is a variant of symmetric
private information retrieval (SPIR), which can be used if the server’s database contains N
entries, at most N / logN of which have individual values, and the rest are set to some default
value. The receiver does not learn whether it receives an individual value or the default value.
This variant of PIR is unique since it can be based on the existence of OT alone.

Keywords: secure two-party computation; document similarity; Hamming distance; HDOT.

Reference to this paper should be made as follows: Jarrous, A. and Pinkas, B. (2013) ‘Secure
computation of functionalities based on Hamming distance and its application to computing
document similarity’, Int. J. Applied Cryptography, Vol. 3, No. 1, pp.21–46.

Biographical notes: Ayman Jarrous is a PhD student at the University of Haifa.

Benny Pinkas is an Associate Professor at the Department of Computer Science at Bar Ilan
University, Israel. He received his PhD from the Weizmann Institute of Science in 2000.
Following that, he worked at the research laboratories of Intertrust Technologies and
Hewlett-Packard, and was a member of the faculty at the Department of Computer Science of the
University of Haifa. His research interests include cryptography, privacy, and computer and
communications security.

1 Introduction

There are many known generic constructions of secure
two-party and multi-party computation, most notably the
seminal constructions of Yao (1986), Goldreich et al. (1987)
and Ben-Or et al. (1988). The downside of generic
constructions is that they are often less efficient than
tailored protocols that are designed for computing specific
functionalities. It is therefore important to identify
functionalities that are essential for many applications, and
design efficient secure constructions of these specific
functionalities. This paper performs this task for a

functionality denoted as ‘Hamming distance-based
oblivious transfer’ (HDOT), for which we also demonstrate
different interesting applications. In particular, we will
explore the application of that functionality for computing
similarity between documents.

The Hamming distance between two strings is defined
as the number of characters in which they differ. We define
‘HDOT’, pronounced ‘h-dot’) as a protocol which allows
two parties, a receiver 1P which has an input w, and a
sender 2P which has an input w′, to securely evaluate a
function f(·, ·) whose output is determined only by the

22 A. Jarrous and B. Pinkas

Hamming distance between w and w′ (denoted dH(w, w′)).
More precisely, the output is defined in the following way:
Let |w| = |w′| = ℓ, then 2P must provide ℓ + 1 additional
inputs Z0, …, Zℓ, and 1’sP output is set to be Zd where
d = dH(w, w′). In this work, we design secure protocols for
computing HDOT in the semi-honest and malicious
scenarios, and for inputs defined over both binary and
arbitrary alphabets. (A semi-honest adversary is one that
follows the instructions defined by the protocol, but may try
to use the information that it gained during execution in
order learn about the inputs of the other parties. A malicious
adversary, on the other hand, may not follow the rules of the
protocol and is thus more powerful than a semi-honest
adversary.) The semi-honest protocols are unique in that
they invoke oblivious transfer a number of times which is
only logarithmic in the input length. The malicious scenario
protocols are secure according to the full simulatability
definition.

On the way we define and use a new class of oblivious
transfer protocols, ‘constrained oblivious transfer’, and
show an implementation of a protocol from this class in the
malicious scenario.

In more detail, this paper contains the following results:

• The paper presents the notion of Hamming
distance-based oblivious transfer, HDOT, and describes
protocols secure against semi-honest adversaries:

1 A protocol denoted binHDOT for binary inputs w,
w′ ∈ {0, 1}ℓ. This protocol operates by computing
O(ℓ) homomorphic encryptions and only log ℓ
invocations of 1-out-of-2 oblivious transfer.

2 A general HDOT protocol, for w, w′ ∈ Σℓ, where Σ
can be arbitrary. This protocol uses binHDOT as a
building block.

• A binHDOT protocol secure against malicious
adversaries (in the stand-alone setting). The protocol
uses two primitives that must also be secure against
malicious adversaries: committed oblivious transfer
with constant difference (COTCD), and oblivious
polynomial evaluation (OPE). We give a construction
for the first primitive, which is an example of a new
class of OT protocols, constrained OT, which we
define. The latter primitive is based on a construction
of Hazay and Lindell (2008).

The security of this protocol is proved according to the
full simulatability notion defined in Canetti (2000).
Therefore, the composition theorem of Canetti (2000)
implies that the resulting protocol can be used as a
building-block for more complex protocols, and
security of those latter protocols can be analysed
assuming that this building-block protocol is
implemented by a trusted oracle (Canetti, 2000;
Goldreich, 2004).1

• Applications of HDOT. These include several
straightforward applications, such as computing the
Hamming distance between strings, or transferring one
of two words based on whether the two input strings are
equal or not (a functionality we denote as EQ, for
equality-based transfer). Another application is a
variant of symmetric private information retrieval
(SPIR) which we denote as m-point-SPIR, and which
can be used when the server’s database contains N
items, of which at most m = o(N / logN) are unique and
the other N – m items have some default value. The
receiver does not know whether it learns a unique or a
default value. We show a protocol which is based on
HDOT and can be reduced to oblivious transfer alone,
which computes this functionality more efficiently than
known PIR protocols. m-point-SPIR can be used for
other applications, as described in Section 6.

• A specific application that we describe in more
detail checks whether two documents are similar.
This application is novel in that it adds privacy to
state-of-the-art document similarity algorithms
of Broder et al. (1997). We designed and also
implemented secure protocols for this task and ran
experiments which demonstrate their efficiency.
These protocols work in the semi-honest setting.

2 Preliminaries

We use the standard definitions of secure two-party
computation in the stand-alone setting [see Goldreich’s
(2004) book (Chapter 7)]. Security of protocols is analysed
by comparing what an adversary can do in a real execution
of the protocol to what it can do in an ideal scenario that is
secure by definition. The ideal scenario involves an
incorruptible trusted third party (TTP) which receives the
inputs of the parties, computes the desired functionality, and
returns to each party its respective output. A protocol is
secure if any adversary which participates in the real
protocol (where no TTP exists) can do no more harm than if
it was involved in the above-described ideal computation.
The exact definition appears in Goldreich (2004).

The hybrid model. Our protocols use other secure protocols,
such as oblivious transfer, as subprotocols. It has been
shown in Canetti (2000) that if the subprotocols are secure
according to the right definition (i.e., full simulatability in
the case of the malicious adversary scenario), it suffices to
analyse the security of the main protocol in a hybrid model.
In this model, the parties interact with each other and have
access to a trusted party that computes for them the
functionalities that are implemented by the subprotocols.
The composition theorem states that it is not required to
analyse the execution in the real model, but rather only
compare the execution in the hybrid model to that in the
ideal model.

 Secure computation of functionalities based on Hamming distance and its application to computing document 23

We remark that the composition theorem of Canetti
(2000) holds for the case that the subprotocol executions are
all run sequentially (and the messages of the protocol
calling the subprotocol do not overlap with any execution).
We also remark that if the oblivious transfer subprotocol is
secure under parallel composition, then it is straightforward
to extend (Canetti, 2000) so that the subprotocols may be
run in parallel (again, as long as the messages of the
protocol calling the subprotocol do not overlap with any
execution).

2.1 Cryptographic primitives and tools

Homomorphic encryption. A homomorphic encryption
scheme allows to perform certain algebraic operations on an
encrypted plaintext by applying an efficient operation to the
corresponding ciphertext. In addition, we require in this
paper that the encryption scheme be semantically secure. In
particular, we use an additively homomorphic encryption
schemes where the message space is a ring (or a field).
There, therefore, exists an algorithm +pk whose input is the
public key of the encryption scheme and two ciphertexts,
and whose output is Epk(m1 +m2) = Epk(m1) +pk Epk(m2).
(Namely, given the public key alone this algorithm
computes the encryption of the sum of the plaintexts of two
ciphertexts.) The new ciphertext is an encryption which is
done with fresh and independent randomness. There is also
an efficient algorithm ·pk, whose input consists of the public
key of the encryption scheme, a ciphertext, and a constant c
in the field, and whose output is Epk(c · m) = c ·pk Epk(m).

An efficient implementation of an additive homomorphic
encryption scheme with semantic security was given by
Paillier (1999, 2000). In this cryptosystem, the encryption of
a plaintext from [0, N – 1], where N is an RSA modulus,
requires two exponentiations modulo N2. Decryption
requires a single exponentiation. The Damgård-Jurik
cryptosystem (Damgård and Jurik, 2001) is a generalisation
of the Paillier cryptosystem that encrypts messages from the
field [1, Ns] using computations modulo Ns+1, where N is an
RSA modulus and s a natural number. It enables more
efficient encryption of larger plaintext. Security is based on
the decisional composite residuosity (DCR) assumption.

Oblivious transfer. Oblivious transfer (abbrev. OT) refers to
several types of two-party protocols where at the beginning
of the protocol one party, a sender, has an input, and at the
end of the protocol the other party, the receiver, learns some
information about this input in a way that does not allow the
sender to figure out what the receiver has learned. This
paper uses 1-out-of-N oblivious transfer 1(OT)N as a basic
building block. The 1OTN protocol runs between two
parties, a sender that has an input (X0, X1, …, XN–1), where
Xi ∈ {0, 1}m, and a receiver that has an input I ∈ {0, 1, …,
N – 1}. By the end of the protocol, the receiver learns XI and
nothing else and the sender does not learn any information
about I. In Naor and Pinkas (2005), it was shown how to
implement 1OTN using logN invocations of 2

1OT . (In a
nutshell, this transformation works by using logN pairs of

keys, where each combination of logN keys encrypts a
different input, and then letting the receiver learn a single
key out of each pair.) There are many efficient
implementations of 2

1OT , starting with a protocol of Even
et al. (1982). Most of these protocols are designed for the
semi-honest scenario, or for a malicious scenario where the
protocol provides only the privacy property and not full
simulatability. We note that while our protocol for the
semi-honest scenario can use any OT protocol, the protocol
for the malicious adversary scenario must use an OT
protocol which is secure in the sense of full simulatability
against malicious adversaries. Such protocols were
described (e.g., in Camenisch et al., 2007; Green and
Hohenberger, 2007; Peikert et al., 2008; Hazay and Lindell,
2008). (We specifically need a committed OT variant where
we can also prove a relation between the inputs of the
sender, and therefore, we use a protocol which builds on the
work of Jarecki and Shmatikov (2007) We also note that in
the malicious case we use 2

1OT and not 1OT .N
The implementation that we ran (and which works in the

semi-honest scenario) uses the protocol of Bellare and
Micali (1990), but can be based on any OT protocol (e.g.,
those of Naor and Pinkas, 2001; Aiello et al., 2001).

Instead of using 1OT ,n one could use a symmetric PIR
protocol, SPIR, which has o(n) communication overhead
and also guarantees that the server learns only a single item
of the sender’s inputs (Gertner et al., 1998). Any PIR
scheme can be translated to a symmetric PIR scheme (Naor
and Pinkas, 2005). Therefore, PIR protocols with sublinear
or polylogarithmic communication overhead (Kushilevitz
and Ostrovsky, 1997; Cachin et al., 1999; Lipmaa, 2005;
Gentry and Ramzan, 2005) yield symmetric PIR protocols
with the same overhead. Unfortunately, these PIR protocols
require executing O(n) exponentiations (compared to O(n)
symmetric encryption operations in 1OTn protocols). We
think that this computation overhead might be prohibitive
for implementations, and therefore only describe and
analyse the usage of OT.

Preprocessing. The operation of any protocol can be
potentially improved by moving part of the computation to a
preprocessing phase, i.e., a step that is run before the parties
receive their inputs. (Another name for preprocessing is
offline/online computation, where preprocessing can be
performed offline, and online operation happens after the
input is received.) Running a preprocessing step lets the
parties perform part of the computation in a time which is
most convenient for them, and reduces the overhead
incurred after receiving the inputs.

It is important to distinguish between interactive and
non-interactive preprocessing. The former requires the
parties to communicate with each other before receiving
their inputs, while the latter lets each party do its
preprocessing by itself. It is of course preferable to use
non-interactive preprocessing, and we demonstrate how it
can be applied to the protocols that we present [this is
preferable to methods that improve the overhead of OT by

24 A. Jarrous and B. Pinkas

performing interactive preprocessing, e.g., using the
‘extended OT’ protocols of Beaver (1996) and Ishai et al.
(2003)].

2.2 Related work

Generic secure computation. Generic protocols (e.g., of Yao
1986) can be used to compute any function. They are
typically based on representing the computed function as a
binary or an algebraic circuit, and applying the protocol to
this representation. The overhead of these protocols depends
on the size of the circuit representation of the functions.
There are many theoretical constructions of secure generic
protocols. Notable examples of implementations of secure
computation are the Fairplay system (Malkhi et al., 2004)
for secure two-party computation, and the FairplayMP and
SIMAP systems (Ben-David et al., 2008; Bogetoft et al.,
2006) for secure multi-party computation. The system
described in Lindell et al. (2008) and Pinkas et al. (2009)
implements fully simulatable secure two-party computation
according to the recent construction of Lindell and Pinkas
(2007). For certain specific functions, there are specialised
protocols which are more efficient than the generic
constructions. Such functions include for example, equality
testing (Fagin et al., 1996), or set intersection (Freedman
et al., 2004).

Computing the Hamming distance and computing similarity.
Protocols for computing the scalar product of vectors
(which is equal to the Hamming distance if the alphabet is
binary) were suggested in Wright and Yang (2004), and
Goethals et al. (2004). These protocols are based on the use
of homomorphic encryption, and are only secure against
semi-honest adversaries. (Our HDOT protocol for the case
of binary alphabets and semi-honest adversaries borrows its
first step from these protocols.)

A protocol for secure efficient approximate computation
of the Hamming distance, with a polylogarithmic
communication overhead, was suggested in Indyk and
Woodruff (2006) [previous protocols for this task use

()O communication for ℓ-bit words (Feigenbaum et al.,
2006; Freedman et al., 2004)]. We wanted to improve upon
these protocols for three reasons:

1 These protocols introduce approximation errors.

2 The protocols are only secure against semi-honest
adversaries.

3 In addition, these protocols have good asymptotic
communication overhead, but use non-trivial
components which seem difficult to implement with a
performance that will be competitive for reasonable
input sizes.2 (We note that another difficulty in using
these protocols is that they output an approximation of
the Hamming distance itself, rather than outputting a
function of the approximated distance. It seems
possible, however, to adapt the protocols to the latter
requirement.)

For the application of secure computation of similarity, it
was shown by Charikar (2002) that the Jaccard similarity
distance embeds isometrically into ℓ1. This means that
similarity can be computed as the Hamming distance
between two binary vectors. Our paper uses a more
straightforward method which applies multiple permutations
to the compared inputs, and then computes the Hamming
distance between two vectors over a large alphabet.

3 Hamming distance-based oblivious transfer

A HDOT protocol is run between two parties, a receiver
1()P and a sender 2().P It is defined as follows:

• Input: 1’sP input is a word w ∈ Σℓ. 2’sP input contains
a word w′ ∈ Σℓ, and ℓ + 1 values Z0, … Zℓ.

• Output: 1’sP output is Zd, where d = dH(w, w′) is the
Hamming distance between w and w′ (note that 1P does
not learn the Hamming distance itself). 2P has no
output.

In other words, the HDOT functionality can be described as
the following mapping

()() ()(),0 ,, , , ..., Hd w wZw w Z Z ′′ ⊥⎡ ⎤⎣ ⎦

This paper describes a special protocol, binHDOT, for the
case that the input words are binary (i.e., Σ = {0, 1}), and a
general protocol which works for alphabets Σ of arbitrary
size.

3.1 Straightforward applications

An HDOT protocol can be immediately used for computing
any function which depends on the Hamming distance.
Following are some interesting examples of such functions:

• The Hamming distance itself can be computed by
setting Zi = i for every 0 ≤ i ≤ ℓ.

• The parity of the exclusive-or of the two inputs is
computed by setting Zi to be equal to the least
significant bit of i, for 0 ≤ i ≤ ℓ.

• EQ – equality-based transfer, or 0 1, (,) :EQ w w′V V This
functionality outputs 0V if w = w′, and 1V otherwise.
The functionality is computed by setting 0 0Z = V and

1iZ = V for 1 ≤ i ≤ ℓ, and executing an HDOT protocol.
1P does not know which of the two cases happens

(namely, whether w = w′). This is crucial for the
applications that are described below.

Recall that it is easy to design a protocol in which 1P
learns a specific value 0V if the two inputs are equal,
and a random value otherwise. [See Fagin et al. (1996),
or consider a protocol where 1P sends a homomorphic
encryption E(w), and receives back E(r · (w – w′) +

0),V where r is a random value.] Our protocol is unique

 Secure computation of functionalities based on Hamming distance and its application to computing document 25

in defining a specific value to be learned if the two
inputs are different, and in hiding whether the inputs
are equal or not.3

• Threshold HDOT protocol: The equality-based transfer
protocol can be generalised to tolerate some errors and
have the output be 0V if the Hamming distance is
smaller than a threshold τ, and be 1V otherwise. In other
words, it implements the following functionality:

() ()
()0 1

0
|

1

, ,
,

, ,
Hτ

H

d τw w
HDOT w w

d τw w
′ <⎧⎪′ = ⎨ ′ ≥⎪⎩

V V

V
V

This functionality is implemented by setting
0 1 0 ,τZ Z −= = = V and 1.τZ Z= = = V

The protocol for equality-based transfer is the major
building blocks of the m-point-SPIR application described
in Section 6.

4 Protocols secure against semi-honest
adversaries

We first describe protocols which are secure against
semi-honest behaviour of the potential adversaries. These
protocols are relatively simple yet they are unique in
invoking oblivious transfer a number of times which is only
logarithmic in the input length. The malicious adversary
scenario is covered in Section 5.

4.1 A protocol for binary alphabets (binHDOT)

Consider first the case where the alphabet is binary
(Σ = {0, 1}). The binHDOT functionality can be securely
implemented by applying Yao’s protocol to a circuit
computing it. That solution would require running ℓ
invocations of 2

1OT . We describe here a protocol which
accomplishes this task using only log(ℓ + 1) 2

1OT s (see
below a comparison of the performance of these two
protocols).

The protocol works in the following way: In the first
step, the parties use homomorphic encryption to count the
number of bits in which the two words differ. The result is
in the range [0, ℓ]. Next, the two parties use 1

1OT +
(implemented using log(ℓ + 1) 2

1OT)s to map the result to
the appropriate output value. The protocol is described in
detail in Figure 1.4

Correctness: The value dH is equal to the Hamming
distance. In Step 4, 1P computes (in)F the value dH + r,
which can have one of ℓ + 1 values (namely r, r + 1, …, r +
ℓ). It holds with probability 1 / | |− F that | | .r < −F
(And since | |F is typically very large compared to ℓ, e.g.,

1024| | 2≈F and ℓ < 1,000, we do not consider here the
negligible probability that this event does not happen.)
Therefore, the computation of dH + r in F does not involve
a modular reduction and has the same result as adding them

over the integers. Reducing the result modulo (ℓ + 1) (in
Step 5) is therefore equal to (r + dH) mod (ℓ + 1). 1P uses
this result as its input to the 1-out-of-(ℓ + 1) OT protocol of
Step 5. 2 ,P on the other hand, sets the sender’s inputs in the
OT such that each Zi value is the sender’s input indexed by
(r + i) mod (ℓ + 1). As a result, the output of 1P in the OT
protocol is ,HdZ as required.

Note that if the parties are only interested in computing
the value of the Hamming distance then the protocol can be
greatly simplified: 2P should send to 1P in Step 3 the
encryption Epk(dH). There is no need to run Steps 4 and 5.

Improving the initial step using non-interactive
preprocessing. An additional improvement can be achieved
in the first step of the protocol, where 1P sends an
encrypted binary representation of the word. This
representation can be precomputed using non-interactive
preprocessing: 1P can prepare in advance ℓ encrypted zeros
and ℓ encrypted ones, instead of encrypting the input bits
online. This preprocessing enables 1P to send the binary
representation directly without spending time online
encrypting 0 and 1 values.

Overhead. We compare the overhead of the binHDOT
protocol to that of applying Yao’s protocol to a circuit
computing the same functionality. We note that the runtime
of an OT protocol is slower than that of a homomorphic
encryption or decryption, and that the runtime of these latter
operations is much slower than that of a homomorphic
addition or a homomorphic multiplication by a constant
(which in turn is much slower than symmetric encryption or
decryption). This relation between run times can be
summarised as follows (where > denotes ‘slower’, and >>
denotes slower by an order of magnitude):

OT homomorphic enc. homomorphic addition
symmetric enc.
> >>

>>

Without using any preprocessing, the binHDOT protocol
requires 1P to compute ℓ encryptions and a single
decryption, while 2P computes ℓ + 1 homomorphic
additions, and the two parties run log(ℓ + 1) 2

1OT s and
(ℓ + 1) symmetric encryptions (in order to implement

1
1OT).+ In Yao’s protocol, the parties compute a circuit

with ℓ input bits and a total of O(ℓ) gates. This requires ℓ
executions of an 2

1OT protocol and O(ℓ) symmetric
encryptions and decryptions. Both protocols require O(ℓ)
communication.

The improvement achieved by the binHDOT protocol is
noticeable since it reduces the number of OTs, which are the
most time consuming operation, from ℓ to log(ℓ + 1). In
addition, the binHDOT protocol can benefit from the
use of non-interactive preprocessing to precompute all
homomorphic encryption operations even before the parties
know of each other. In that case the ℓ encryptions done by

1P are computed offline, and its online computation is
composed of a single decryption and log(ℓ + 1) OTs. (Yao’s

26 A. Jarrous and B. Pinkas

protocol cannot precompute the oblivious transfers without
using interaction. We note that if interactive preprocessing
is possible, then the OTs themselves can be precomputed in
both protocols, and this reduces the overhead of both
protocols.)

Theorem 1: The binHDOT protocol in Figure 1 is secure
against semi-honest adversaries in the OT hybrid model
(i.e., under the assumption that the OT protocol is secure).

Proof: The security analysis is done under the assumption
that the parties are semi-honest and that the OT protocol is
implemented by an oracle (the latter assumption can be
replaced by using an OT protocol secure against
semi-honest adversaries). In the protocol, 2P receives
homomorphic encryptions of a binary representation of a
word, and then it plays the role of the sender in an OT

protocol in which it receives no output. We can simulate
2’sP view by sending it encryptions of random values. If
2P can distinguish between these encryptions and the

encryptions it receives in the protocol, then a standard
reduction shows, through a hybrid argument, that 2P can
break the semantic security of the encryption. As for 1,P it
receives from 2P a random value (dH + r) and then it
participates as the receive in the OT protocol. The parties
are semi-honest and therefore they follow he directions of
the protocol and thus the output of the OT is the designated
output of the protocol. It is therefore possible to simulate

1’sP view by sending it first a random value, and then send
it, as the output of the OT, the output of the functionality
(learned in the simulation from the TTP). �

Figure 1 The binHDOT protocol secure against semi-honest adversaries

0 ,....,HDOT Z Zbin (w, w′) Protocol

Input: 1’sP input is a word w = (w0, …, wℓ–1), 2’sP input is ()0 1 ,, ...,w w w −′ ′ ′= where wi; {0,1}.iw′∈ 2P has additional inputs
(Z0, …, Zℓ).

Output: 1P receives Zi such that dH(w, w′) = i. 2P learns nothing.

The protocol uses Epk(·), a homomorphic encryption function. The plaintexts are in a ring or a field .F (We emphasise that ℓ and |Σ| are
negligible compared to | | .F A typical size could be 1024| | 2 .)=F pk is a public key that both parties know, but only 1P knows the
corresponding private key and can decrypt messages.

 1 1P sends the homomorphic encryption of each bit of the binary representation of w = {w0, …, wℓ–1}, where wi ∈ {0, 1}.

 2 2P receives the encrypted representation {Epk(w0), …, Epk(wℓ–1)}. For each bit location j it calculates Epk(ϑj), where ϑj ∈ {0, 1}
and is equal to 1 if, and only if, .j jw w′≠ The calculation is done in the following way:

() () ()()
() () ()()

1 11

1 1

j j jpk pk j j

j j jpk pk pk pk pk pk j

w wE E w w

w w wE E w

′ ′− −= ⋅ + ⋅

′ ′−= ⋅ + − ⋅

ϑ

 At the end of this step, 2P has the values {Epk(ϑ0), …, Epk(ϑℓ–1)}.

 3

Using the homomorphic properties, 2P sums the results of the previous step and computes () ()
1

0
.pk pk iHE Ed

−
=∑ ϑ The value

dH is in the range {0, 1, …, ℓ} and is equal to the Hamming distance between the two input words. In addition, 2P chooses a
random value ,r∈F computes the value Epk(dH + r), and sends it to 1.P (In other words, it shifts the result by a random value r.
Note that with overwhelming probability, 1 / | |,− F this addition operation does not involve a modular reduction.)

 4 1P receives Epk(dH + r) and decrypts the result.

 5 Next, the parties map the result to the appropriate Zi value, by invoking a 1
1OT + protocol where 1P is the receiver and 2P is the

sender:

 • The input of 1P is (dH + r) mod (ℓ + 1).

 • 2P has inputs X0, …, Xℓ, where Xi = Z(i–r) mod (ℓ+1) (namely, Zi is mapped to input (i + r) mod (ℓ + 1) of the OT).

 1’sP output in the OT is its output in the binHDOT protocol.

 Secure computation of functionalities based on Hamming distance and its application to computing document 27

Figure 2 The HDOT protocol for general alphabets

0 ,....,HDOT Z Z (w, w′) Protocol

Input: 1P has an input w = 〈w0, w1, …, wℓ–1〉 ∈ Σℓ. 2P has an input 0 1 1 ,, , ...,w w w w −′ ′ ′ ′= ∈Σ and additional input values Z0, …, Zℓ. We
denote by jw the binary representation of wj, which is ⎡log(|Σ|)⎤ bits long.

Output: 1P learns Zi such that dH(w, w′) = i, 2P learns nothing.

 1 For every i ∈ [0, ℓ – 1], 2P chooses at random a value .i R∈ Fα Both parties then run the protocol 1, (,).i i i iEQ w w+
′α α (,i iw w′

denote the binary representations of the letters wi and ,iw′ respectively. The output of this protocol is αi if ,i iw w′= and αi + 1
otherwise.)

 At the end of the process, 1P obtains the values {β0, …., βℓ–1}, where

,
1,

i i i
i

i i i

w w
w w

′=⎧
= ⎨ ′+ ≠⎩

α
β

α

 2

1P sums, modulo (ℓ + 1), the βi values it received. Namely, it computes ()1

0
mod(1).iσ

−
= +∑β β 2P sums its α values and

computes ()1

0
mod(1).iσ

−
= +∑α α

 3 Both parties run an 1
1OT + protocol with the following inputs:

 • 1P is the receiver and its input is σβ

 • 2P is the sender and its input is {X0, …, …, Xℓ}, where () mod(1).i i σX Z − += α

 The value that 1P receives in the OT is defined as its output in the protocol.

4.2 A protocol for arbitrary alphabets (HDOT)

We now describe an HDOT protocol which works over
arbitrary alphabets Σ. The protocol is based on applying the
binHDOT protocol to every character of the words. More
specifically, the parties have inputs w, w′ ∈ Σℓ, respectively.
The protocol begins with the parties representing each of the
letters of Σ as a binary word of length ⎡log |Σ|⎤, and then
running (for each letter location) the equality-based transfer
(EQ) protocol, which was defined above and is an
application of binHDOT. In each execution of the EQ
protocol 1P learns a value αi if wi = w′i , or the value
αi + 1 otherwise, where αi is chosen at random by 2.P
Then, 1P sums the values that it has received modulo ℓ + 1.
The result is equal, modulo ℓ + 1, to i∑α plus the

Hamming distance of the original words. The parties then
run an 1

1OT + protocol to map the result to the desired
output. The protocol is detailed in Figure 2.

Correctness. For every 0 ≤ i ≤ ℓ – 1, 1P and 2P learn in
Step 1 values βi, αi, respectively, such that βi = αi if the
letters wi and iw′ are equal, and βi = αi + 1 if the letters are

different. Let
1

0
,ii

S
−

=
=∑α α where here the addition is

done in .F Define Sβ similarly. Let d be the Hamming
distance between the two input words. Then it holds with
probability 1 / | |− F that Sβ = Sα + d, where the addition
here is done over the integers. Therefore, the values σα = Sα
mod (ℓ + 1) and σβ = Sα mod (ℓ + 1) computed in Step 2
satisfy that σβ – σα mod (ℓ + 1) is equal to the Hamming
distance d (which is in the range [0, ℓ]).

Consider now the OT in Step 3. Assume first that σα = 0.
In this case 1’sP input to the OT, σβ, is equal to the
Hamming distance, and the inputs of 2P to the OT are the
values Z0, …, Zℓ (in that order). The OT protocol therefore
computes the desired output in this case. Now, if σα > 0 then

1’sP input to the OT protocol is cyclically shifted (modulo
ℓ + 1) by σα, while the order of 2’sP inputs to the OT is also
cyclically shifted (modulo ℓ + 1) by the same value σα. The
OT protocol therefore computes the correct result.

Overhead. The overhead is that of applying the binHDOT
protocol ℓ times over log |Σ| long binary strings, and then
running log(ℓ + 1) invocations of 2

1OT . The parties run ℓ
log log |Σ| + log(ℓ + 1) 2

1OT s, as well as O(ℓ log |Σ|)
homomorphic operations. (A direct implementation of this
functionality using Yao’s protocol would have required
invoking O(ℓ log |Σ|) OTs.)

Theorem 2: The HDOT protocol in Figure 2 is secure
against semi-honest adversaries in the OT hybrid model.

Proof: Analysing security in the hybrid model, we assume
that the OT and binHDOT protocols, and therefore also the
EQ protocol, are executed by a trusted oracle. 2P is the
sender in the binHDOT and OT protocols. Therefore, it does
not learn any information by participating in these
protocols. 1P receives in Step 1 the βi values, which are
defined as either βi = αi or βi = αi + 1, where each αi value
is chosen randomly by 2.P In the last step, 1P receives in
the OT the result of mapping the sum of the values to the
appropriate Zi value, which is the designated output of the
protocol. We can therefore simulate 1’sP view by first

28 A. Jarrous and B. Pinkas

sending it random values and then sending it the output of
the functionality (as learned from the TTP used in the
simulation). �

4.3 Weighted Hamming distance-based OT

The weighted Hamming distance between two ℓ-letter
strings w, w′ is defined in the following way: The function
depends on a set of integer weights ω0, …, ωℓ–1. We define
δi, for 0 ≤ i ≤ ℓ – 1, to be 0 if ,i iw w′= and 1 otherwise. The

weighted Hamming distance is
1

0 i ii
δ ω

−

=∑ (earlier we

handled the case where ∀i ωi = 1). This function enables to
assign to any letter location a specific weight corresponding
to its importance.

It is possible to slightly change the HDOT protocols
to support the computation of a weighted Hamming
distance-based OT. In the binary alphabet case, the revised
binHDOT protocol computes in Step 2 the values Epk(ϑjωj)
by multiplying Epk(ϑj) by ωi. The value dH is defined to be

the sum of these values. Let
1

0
.ii

ω
−

=
Ω =∑ The value of dH

is in the range [0, Ω]. Therefore, 2P has inputs Z0, …., ZΩ,
and the last step of the protocol computes a 1-out-of-(Ω + 1)
OT. In the case of an arbitrary alphabet, each βi value is set
to αi + ωi if the two letters are different, and to αi is they are
equal. Again, the last step computes a 1-out-of-(Ω + 1) OT.

5 A binHDOT protocol for malicious adversaries

Designing an efficient protocol which is secure against
malicious adversaries [in the sense of full simulatability, as
defined in Goldreich (2004)] is a challenging task. A
protocol with this level of security can be implemented
using generic constructions, such as the constructions in
Lindell and Pinkas (2007), and Jarecki and Shmatikov
(2007), but these currently impose an additional overhead,
caused, for example, by communicating and evaluating
multiple copies of a circuit computing the functionality. We
design a new binHDOT protocol to handle the presence of
malicious adversaries. In this protocol, the parties use
committed OT to learn whether corresponding bits of the
two words are equal, and then use an OPE protocol (Naor
and Pinkas, 1999; Hazay and Lindell, 2008) to map the
result to an output value. (This is different than the semi-
honest case, where homomorphic encryption was used to
compare bits, and 1OTN was used to compute the final
result.) The new protocol uses OT and OPE protocols which
are efficient and yet are secure in the sense of full
simulatability against malicious adversaries. Security can
therefore be analysed in the hybrid model. In more detail,
the protocol uses the following tools:

Committed 1-out-of-2 oblivious transfer with constant
difference. (or 2

1COTCD), secure against malicious
adversaries. A committed OT protocol in an OT protocol
where the parties commit to their inputs: the sender commits
to its inputs m0, m1 and the receiver commits to its input

σ ∈ {0, 1}. During the protocol, each party can verify that
the other party’s input is equal to the corresponding
committed value. We define a committed OT with constant
difference (COTCD, pronounced ‘cot-cd’) to be a
committed OT with an additional auxiliary input composed
of a value Δ known to the sender, and a commitment to Δ
which is known to the receiver. The protocol lets the
receiver verify that the difference of the two inputs of the
sender is ±Δ. In other words, it either holds that m1 – m0 = Δ
or that m0 – m1 = Δ. (In our application the COTCD protocol
will be run several times with the same committed Δ value.
The protocol will be run once for each letter location. The
receiver learns some value if the two corresponding letters
are equal. If the letters are different it learns that value plus
Δ. Summing the values learned for all letters, the receiver
obtains a result which is equal to some base value plus Δ
times the Hamming distance. This value is then used for
computing the final result.)

We describe in Appendix how to construct the COTCD
primitive based on the Jarecki and Shmatikov (JS) (2007)
committed OT protocol, which is in turn based on the
Camenisch-Shoup (CS) encryption scheme (Camenisch and
Shoup, 2003).5 We use that protocol since it can be used to
transfer strings, and since it is easy to add to it an efficient
zero-knowledge proof that the messages of the sender have
the required difference [it seems much harder to add a proof
of this type to other OT protocols which are secure against
malicious adversaries, such as the protocols of Hazay and
Lindell (2008), Peikert et al. (2008)]. The JS protocol is
UC-secure in the common reference string model and
therefore all invocations of that protocol can be run in
parallel. As a result, the HDOT protocol we construct can
execute in parallel all ℓ invocations of the COTCD protocol.
Alternatively, the two parties can run a secure protocol for
computing the common random string (CRS) required for
UC-security, and obtain a protocol which is secure in the
standard model (see Appendix). The protocol is proved to
be secure under the DCR assumption (i.e., the assumption
on which the Paillier homomorphic encryption system is
based).

Constrained OT: COTCD is an example on a family of
oblivious transfer protocols which we can denote as
‘constrained OT’. This family contains OT protocols which
have additional constraints on the values of their inputs and
where the receiver verifies that these constraints hold. In the
case of COTCD, the two input values of the sender must
have a difference which is equal to the committed value Δ.
(Another example is the circuit evaluation protocol of
Jarecki and Shmatikov (2007), where the constraint is that
the values transferred in the OT can decrypt entries in gate
tables.)

Commitment scheme. The CS encryption scheme (Camenisch
and Shoup, 2003) is used in our protocol as a commitment
scheme, as is suggested in Jarecki and Shmatikov (2007).
The details are described in Appendix.

 Secure computation of functionalities based on Hamming distance and its application to computing document 29

An OPE protocol. (Secure against malicious adversaries).
An OPE protocol (Naor and Pinkas, 1999) is a protocol
where the sender’s input is a polynomial P(·) of a certain
degree, and the receiver’s input is a value x. The receiver’s
output is P(x) while the sender learns nothing. We use the
OPE construction of Hazay and Lindell (2008), which is
secure (in the sense of full simulatability) against malicious
adversaries, and uses very few exponentiations.

The underlying fields. The output of the COTCD protocol is
used as an input of the OPE protocol. The COTCD protocol
runs in a group 2

* ,n= ZF where 2
*
nZ is defined by a safe

RSA modulus n = pq, where p = 2p′ + 1, q = 2q′ + 1,
|p| = |q|, p ≠ q and p, q, p′, q′ are all primes. The encryption
scheme of Camenisch and Shoup, which is used in the
protocol as a commitment scheme, works in the same group.
The OPE protocol of Hazay and Lindell (2008) runs in ,NZ
with N being an RSA modulus. Our protocol must enable
the parties to use the result of the COTCD protocol as an
input to the OPE protocol. It must therefore use a group

2
*
nZ and a field ,NZ which satisfy that 2

*| | | |,Nn <Z Z and
therefore we will require that n2 < N. We define a simple

mapping 2
*: ,Nnf → where the only requirement is that

no two elements of 2
*
n are mapped by f to the same value

in .N The protocol then performs the initial computations
in 2

*
n and then uses f to map the result to .N

The protocol itself is described in Figure 3. In the
protocol, for every bit location i, 1P receives a value 0

it if
the corresponding bits are equal, and the value 0

it + Δ
otherwise. The value Δ, and also all 0

it values, are randomly
chosen by 2.P (In the semi-honest case 1P learned one of
two values whose difference was 1. Here, the difference is a
random number Δ in order to prevent attacks by a malicious

1.)P 1P then sums the values it received, and obtains the

result 0
1

,ii
t d

=
+ ⋅Δ∑ where d is the Hamming distance.

We use the notation 0
1

.r ii
σ t

=
=∑ 2P then prepares an

OPE where ∀j ∈ [0, ℓ], P(f(σr + j · Δ)) = Zj. The parties
execute an OPE and 1P computes P(f(σr + dΔ)) and learns
the desired result.

Figure 3 The binHDOT protocol for the malicious case

Malicious 0 ,...,HDOT Z Zbin (w, w′) Protocol

Input: 1’sP input is a word w = (w0, …, wℓ–1), 2’sP input is ()0 1 ,, ...,w w w −′ ′ ′= where wi, {0, 1}.iw′∈ 2P has additional inputs
(Z0, …, Zℓ).

Output: 1P receives Zi such that dH(w, w′) = i (i.e., the Hamming distance of w and w′ is i). 2P learns nothing.

 1 2P chooses at random 2
*

R nΔ∈ and sends to 1P a commitment to Δ. In addition it proves to 1,P using a zero-knowledge proof
of knowledge, the knowledge of Δ.

 2 For each pair of bits (,),i iw w′ both parties use COTCD to check whether the bits are equal:

 • 2P chooses a random value 0 ,i Rt ∈ F and defines 1 0 .i it t= + Δ

 • Both parties run a COTCD protocol:
 (a) The auxiliary inputs to the protocol are Δ, known to 2,P and a commitment to Δ, known to 1.P

 (b) 1P is the receiver and its input is wi.

 (c) 2P is the sender. If 0iw′ = then it sets 0 1 0 1(,) (,);i i i ix x t t= Otherwise, 0 1 0 1(,) (,).i i i ix x t t=

 In each execution of the protocol, if both bits are equal then 1P learns 0 ,it otherwise, 1P learns 1.it (In addition, the verification
step of the COTCD protocol enables 1P to verify that 1 0| | .i ix x− = Δ If this check fails then 1P aborts the protocol.)

 By the end of this step, 1P learns 0 1
0 1, ..., ,b bt t −

− where ,i i ib w w′= ⊕ while 2P does not learn any information.

 3
1P computes ib

t iσ t=∑ and 2P computes 0.r iσ t=∑ These summations are done in 2
* .n

 4
2P constructs a polynomial

0
() i

iP x a x=∑ in ,N such that P(f(σr + i · Δ)) = Zi, ∀i ∈ {0, 1, …, ℓ} (where f is the simple

mapping from 2
*
n to),N and P(0) is random. (This construction succeeds if 0 ∉ {σr, …, σr + ℓΔ}, which happens with

probability 1 (1)/ | | .)N− + The degree of P is ℓ + 1.

 5 1P and 2P run an OPE protocol to evaluate P(f(σt)), such that 1P learns the result while 2P does not learn any information. (f is
a mapping function as defined in Section 5)

30 A. Jarrous and B. Pinkas

The protocol uses an OPE instead of 1
1OT + since the values

are mapped to locations in a large range, rather than to
indices in the range [0, ℓ], in order to prevent a malicious

1P from learning any Zi value which does not correspond to
the actual Hamming distance. If 1P evaluates the
polynomial at any point other than intended, it is likely to
receive a random answer since it does not know Δ and is
therefore unlikely to choose any point corresponding to a Zi
value. As for a malicious 2 ,P its inputs w′ and Z0, …, Zℓ can
be extracted from its interaction with the OT and OPE
protocols, and are used for a simulation-based proof.

Theorem 3: (Correctness) The protocol of Figure 3
computes the binHDOT functionality.

Proof: Let us follow the steps of the protocol. In each
execution of the COTCD protocol, 1P learns 0

it if both bits
are equal, otherwise, it learns 1 0 .i it t= + Δ In other words, it

learns ,ib
it where .i i ib w w′= ⊕

Then, in Step 3, 1P computes 0 1
0 1 ,b b

tσ t t −
−= + + and

2P computes 0 0
0 1.rσ t t −= + + Therefore, it holds that σt –

σr = Δ · dH(w, w′). In Step 4, 2P constructs a polynomial
P(x) such that: P(f(σr)) = Z0; P(f(σr + Δ)) = Z1, …, P(f(σr + ℓ
· Δ)) = Zℓ. In the last step of the protocol, the parties use an
OPE protocol to compute (,)(()) .Ht d w wP f σ Z ′= �

Theorem 4: (Security) The protocol securely computes
binHDOT in the presence of malicious adversaries.

Proof: The security of the protocol is proved in the hybrid
model, assuming that the COTCD and OPE primitives, as
well as the zero-knowledge proof of knowledge of Δ used in
the protocol, are performed by a trusted oracle (or trusted
party). This assumption is justified since we describe in
Appendix an implementation of the COTCD protocol which
is fully simulatable secure against malicious adversaries,
and since a protocol for OPE, with similar security, was
presented by Hazay and Lindell (2008). The security of the
ZK proof of knowledge of Δ is based on standard
arguments. All these protocols (COTCD, OPE and ZK
proof) have security proofs based on the DCR assumption.

We compare the execution of the protocol between 1P
and 2P to an execution with a TTP, where the TTP receives
the inputs of both parties and computes the following
functionality: If the input of 1P is w and the input of 2P is
〈w′, (Z0, …, Zℓ)〉, then the output of 1P is (,) .hd w wZ ′
Otherwise if the input of 1P is a special symbol ρ then the
output of 1P is a random value. Otherwise if the input of
either party is a special symbol ⊥ then the protocol
terminates.

We first prove security in the case that 1P is corrupt and
then in the case that 2P is corrupt.

1P is corrupt. The idea behind the proof is that 1’sP choices
in the COTCD protocols define its input w. 1P is then
supposed to sum the values it receives in the COTCD

invocations and uses the result as its input to the OPE
protocol. If it uses a different input to the OPE protocol,
then, since it does not know Δ, it happens with
overwhelming probability that 1P queries a value of the
polynomial at a point which was not defined by Z0, …, Zℓ
and receives a random answer.

More formally, let A be an adversary controlling 1.P
We construct a simulator Sim that generates the view of
both parties, A and 2 ,P in the hybrid model, given only
access to A and to the ideal model:

1 Sim chooses a random value Δ and sends to A a
commitment of Δ; Then, Sim runs the zero-knowledge
proof of knowledge of Δ, with A as the verifier.

2 For each invocation of COTCD, Sim (simulating a
trusted oracle that executes the COTCD protocol)
receives ’sA bit input. It defines ’sA corresponding
input bit wi to be this value, and then chooses a random
value ti and sends it to A as the result of the COTCD
protocol. (This happens if ’sA input to the protocol is
0 or 1. Otherwise, if ’sA input is ⊥ or a value that is
different from 0 or 1 then Sim terminates the protocol.)

 After finishing all executions of the COTCD protocol,
Sim computes .t iσ t=∑ . Also, Sim has ’sA input

w = (w0, …, wℓ–1). It sends it to the trusted party
computing the binHDOT functionality and receives
from it the result Z.

3 Sim then plays a trusted oracle computing the OPE
protocol. Sim receives ’sA input to the OPE: If ’sA
input to the OPE is σt then Sim sends it the answer Z;
Otherwise, if its input is ρ, then Sim sends A a random
value; if the input is ⊥ then Sim terminates the protocol.

4 Sim outputs whatever A outputs and halts.

We now show that the joint output distribution of A
and 2P in the hybrid model protocol execution is
indistinguishable from the output of Sim and 2P in the ideal
world simulation.

We start with the case where A sends ⊥ to Sim, i.e.,
terminates its running in the protocol. This could happen in
any phase of the protocol and as in the hybrid model, where
Sim terminates, the protocol also terminates and A does
not learns any further information.
A and 2P invoke COTCD protocol, where in the

hybrid model, A sends its input to COTCD. If A sends 0
or 1 then it learns the appropriate result. Otherwise, the
protocol terminates.

Now A and 2P invoke OPE protocol, consider first the
case that ’sA input to the OPE is equal to σt. In the hybrid
model execution, this results in evaluating the polynomial
with an input which is the sum of the answers received in
the COTCD protocols, namely with an input f(σt) = f(σr + Δ
· dH(w, w′)), where w = w1, …, wℓ and each wi is ’sA input

 Secure computation of functionalities based on Hamming distance and its application to computing document 31

to the ith invocation of COTCD. The result is (,) ,Hd w wZ ′ as is
the result in the simulation.

Consider now the case that ’sA input to the OPE is
different from σt. Note that A does not know Δ, which was
chosen at random, and therefore with probability
1 / | |N− it evaluates the polynomial at a point which is
different than σr, σr + Δ, …, σr + ℓΔ In the hybrid model
execution, this results in receiving an answer which is
random and independent of Z0, …, Zℓ. This also happens in
the simulation.

2P is corrupt. Let A be an adversary controlling 2.P The
proof is based on the following ideas:

1 Sim extracts the value of Δ from the zero-knowledge
proof of knowledge that is proved by A

2 Sim then learns the inputs that A uses in the COTCD
invocations, and based on these values the simulator
computes w′ and σr

3 It also learns the coefficients of the polynomial P(·)
which is ’sA input to the OPE, and can therefore
compute Z0 = P(σr), …, Zℓ = P(σr + ℓΔ)

4 Finally, the simulator sends 〈w′, (Z0, …, Zℓ)〉 to the
TTP.

In more detail, we construct a simulator Sim that generates
the view of both parties, 1P and 2 ,P given only 2’sP input
in the ideal model.

1 Sim receives from A the commitment to Δ, and then
plays the verifier in the zero-knowledge proof of
knowledge. If Sim accepts the proof, it runs the
knowledge extractor in order to learn Δ. Otherwise it
terminates the execution of the protocol and sends ⊥ to
the trusted party. (Also, here and throughout the
simulation, if A sends ⊥ as input then Sim halts the
execution and sends ⊥ to the trusted party.)

2 For each execution of COTCD, Sim acts as a trusted
oracle that performs the protocol. Sim therefore
learns ’sA input 0 1(,).i ix x First, Sim verifies that

0 1| |i ix x− = Δ and if this property does not hold it
aborts the protocol. Then, Sim defines each letter iw′ of
the input word w′ of :A

• 1,iw′ = if 0 1
i ix x= + Δ

• 0,iw′ = Otherwise.

 Finally, Sim computes 0.iw
r i iσ x t′= =∑ ∑

3 In the OPE step, Sim simulates a trusted party
computing the OPE functionality. In this functionality,
A provides an input but receives no output. It receives
from A its input P(·) to the OPE, which could be a
random polynomial. It then computes Z0 = P(f(σr)),
Z1 = P(f(σr + Δ)), …, Zℓ = P(f(σr + ℓΔ)). Now, Sim

sends to the trusted party (computing binHDOT) the
input 〈w′, (Z0, …, Zℓ)〉.

4 Sim outputs whatever A outputs and halts.

Also here, we show that the joint output distribution of A
and 1P in the hybrid model protocol execution is
indistinguishable from the output of Sim and 1P in the ideal
world simulation.

In the case where A sends ⊥ to Sim, i.e., terminates its
running in the protocol, which could happen in any phase of
the protocol, Sim terminates, as in real execution where the
protocol terminates.
A and 2P run ℓ invocations of COTCD, where in the

hybrid model are executed by TTP. A is enforced to
commit Δ and proofs its knowledge as in the simulation, in
addition, both values, 0 1(,),i ix x that A sends to the TTP
satisfies 0 1| |i ix x− = Δ and 1P learns one of the results,
otherwise, the protocol aborts.

In the last step, A and 1P invoke OPE, where 1’sP
input is 0

(,)t H w wiσ t d ′= + Δ ⋅∑ and A builds a polynomial

of ℓ + 1 degree, this polynomial can be a random
polynomial, and both parties sends their inputs to the TTP,
as in the simulation, 1P learns the result and A does not
learn any information. �

Efficiency. The overhead of the protocol is composed of
running ℓ invocations of the COTCD protocol (which can be
run in parallel, since the protocol is UC-secure), and a single
invocation of the OPE protocol of Hazay and Lindell
(2008).

The COTCD protocol, based on Jarecki and Shmatikov
(2007), requires O(1) rounds of communication and a
constant number of exponentiations per party, including our
auxiliary input and verification steps. In addition, the OPE
protocol (Hazay and Lindell, 2008) requires O(ℓ + s)
exponentiations, where s is a statistical security parameter,
and a constant number of communication of rounds.

Thus, the overhead of the entire protocol is O(ℓ) rounds
of communication and O(ℓ + s) exponentiations.

5.1 Securing the applications against malicious
adversaries

The protocol described above is secure against malicious
behaviour of either party. However, it does not enforce any
structure of the inputs Z0, …, Zℓ of 2P and therefore a
corrupt 2P can set these inputs to arbitrary values. This
‘feature’ does not affect plain usage of the protocol, but it
means that security against malicious adversaries cannot be
guaranteed if the protocol is used for computing any
functionality that requires specific relations between the Zi
values. Unfortunately, this is relevant to the relations
required in the applications detailed in Section 3.1. For
example, the EQ application, i.e., equality-based transfer,
requires that Z1 = Z2 = ··· = Zℓ (since all these values
correspond to the case that w ≠ w′). As a result, the protocol

32 A. Jarrous and B. Pinkas

cannot be used ‘as is’ as a building block for protocols
(secure against malicious adversaries) for the HDOT
functionality for arbitrary alphabets, or for the EQ
functionality.

In order to adapt the protocol for these tasks, it is
required to add zero-knowledge proofs which assure 1P that
the Zi inputs follow the desired structure. This is of course
possible in principle, but in this work we have not examined
how to optimise the efficiently of such proofs. We will only
describe here the steps which are required in order to design
and implement an EQ protocol secure against malicious
adversaries (protocols for the other applications can be
designed in a similar way):

1 The protocol needs an additional step where 1P obtains
a commitment Com(σr) to the base value 0.r iσ t=∑

This commitment can be computed given the
commitments that 2P generates in the committed OT
protocols; the correctness of the committed value can
be proved using 2’sP proofs about the Δ differences of
its input pairs. (Namely, 2P must prove that there exist
bits b0, …, bℓ–1 such that ,ib

rix σ=∑ and that ∀i
1 0 .)i ix x= + Δ

2 The parties need to use a ‘committed OPE’ protocol,
where 2P commits to the coefficients of its polynomial
(such a protocol has not been described yet, but it is not
hard to imagine how to implement it using techniques
similar to those used for committed OT).

3 2P must prove that there are values s; d such that s is
committed to in Com(σr), d is committed to in Com(Δ),
and it holds that P(s + d) = P(s + 2d) = ··· = P(i + ℓd).
The main challenge in designing this step is that
P(s + d) is computed to by multiplying the committed
coefficients of P by powers of the value s + d. Namely,
the proof is about the sum of multiplications of
committed values.

6 Application: m-point SPIR

Another application of the HDOT protocol is a new variant
of SPIR which we denote as m-point-SPIR. A definition and
a discussion of single server PIR and symmetric PIR appear
in, e.g., Kushilevitz and Ostrovsky (1997), and Cachin et al.
(1999). In short, a PIR protocol involves a server with a
database of N items x0, …, xN–1 and a client who is
interested in learning entry xi of the database. This must be
accomplished with o(N) communication, without revealing i
to the server, and (in the case of symmetric PIR) without
revealing to the client anything but xi.

The m-point-SPIR protocol that we define can be
applied if at most m of the items of the server’s database
have specific values, and all other items have some default
value .x The client must not know whether the value it
learns is the default value x or one of the unique
values. We describe below a couple of applications of

m-point-SPIR. The m-point-SPIR functionality is similar to
a simpler functionality, where the client learns a random
value if its input does not match any of the m indices which
have specific values. The latter functionality is much
simpler to implement (using OPE), as we detail below.

We show a protocol which implements m-point-SPIR
with O(mlogN) communication and O(mlogN) computation
(the smaller m is, the more efficient the protocol is).
Therefore, the communication is o(N) as long as m = o(N /
logN). Another nice property of the m-point-SPIR protocol
is that it can be implemented based on the existence of
oblivious transfer alone. This property is not known for
general SPIR protocols. [Furthermore, it is known that there
cannot exist any transparent black-box reduction of PIR to
OT (Meier and Przydatek, 2006).]

The m-point-SPIR functionality is defined in the
following way. The server has inputs 0 ≤ p1, …, pm ≤ N – 1,
which are all distinct, and additional values ,x 1 , ..., .mp px x
The client has an input 0 ≤ i ≤ N – 1. The output of the
client is jpx if there is an index 1 ≤ j ≤ m such that i = pj, or
x if no such pj exists.

1-point SPIR. The implementation of 1-point-SPIR is
straightforward given our previous protocols. The parties
simply execute the protocol 1 , 1(,),px xEQ i p whose output is

1px if i = p1, and x otherwise. (The EQ protocol is defined
in Section 3.1.) The communication overhead is of the order
of the length of the index i, namely O(logN), times the
length of the security parameter (i.e., the length of the
homomorphic encryption). (This is under the reasonable
assumption that the length of the database values (the x
values) is in the order of the length of the security
parameter; otherwise the communication is O(logN · |x|).)
The computation overhead is O(logN), and it is composed of
O(logN) homomorphic encryptions and O(log logN) OTs.

m-point-SPIR. For the general case of m-point-SPIR, the
server first defines m random values 1, ..., mz z′ ′ under the
constraint that their exclusive-or is .x It then defines values
z1, z2, …, zm satisfying the constraints

1 2 3 1

1 2 3 2

1 1

m

m

m m m

z z z z x
z z z z x

z z z x−

′ ′ ′⊕ ⊕ ⊕ ⊕ =
′ ′ ′⊕ ⊕ ⊕ ⊕ =

′ ′⊕ ⊕ ⊕ =

The parties execute the protocols 1 1 2 2, 1 ,(,), z z z zEQ i p EQ′ ′
(i, p2), up to , (,).m mz z mEQ i p′ The client then computes the
exclusive-or of the m values that it learned in these
protocols.

Correctness follows from the fact that if there exists a j
coordinate for which i = pj then the client learns a single zj
value. Otherwise i ≠ p1, …, pm and the client learns only jz′
values. Therefore, the exclusive-or of all the values that the
client receives is equal to xj in the former case, or to x in
the latter case.

 Secure computation of functionalities based on Hamming distance and its application to computing document 33

It is easy to verify the security of this protocol
(assuming that the parties are semi-honest). Note that the
client always performs the same operations and does not
recognise whether it learned the value x or one of the m
special values. The communication overhead is O(mlogN)
times the length of the security parameter, and the
computation overhead is also O(mlogN). This is therefore a
SPIR protocol (with o(N) communication) as long as
m = o(N / logN), and in that case the computation overhead
is also o(N). (A ‘traditional’ PIR protocol will have O(N)
computation overhead, since it must also process the entries
with the default value.)

Basing m-point-SPIR on OT. The EQ protocol (which is
essentially the HDOT protocol) is based on using a
homomorphic encryption scheme and an oblivious transfer.
However, it is easy to see that the usage of homomorphic
encryption can be replaced with the usage of oblivious
transfer alone (as is done in the HDOT protocol for the
malicious case). As a result, m-point-SPIR can be based on
oblivious transfer alone.

Comparison to other protocols. Our m-point-SPIR protocol
can be compared to OPE, in which the server has an
(m – 1)-degree polynomial P, defined over a field of size at
least N, and where the polynomial satisfies P(pj) = xj for
all j ∈ [1, m]. The client has input 0 ≤ j ≤ N – 1 and it
obliviously computes P(j). The OPE protocol has
communication and computation overheads of O(m) field
operations, but it has the drawback that for inputs not in
p1, …, pm the client receives a random output rather than a
specific value .x

The m-point-SPIR protocol can also be compared to PIR
protocols of the type of the protocol of Cachin et al. (1999)
(that protocol is based on the φ-hiding assumption rather on
general assumptions). These protocols, too, have the
property that the server’s work depends on the number of
items in its database that have non-default values. Namely,
it is O(m) if the server has m items in its database, even if
the range of the client’s input is [1, N]. Still, in those
protocols the sender is not able to set a ‘default’ value x to
be returned for all other N – m values of the client’s input.
Finally, the m-point-SPIR functionality can be implemented
using Yao’s generic protocol and a circuit of size O(mlogN),
and mlogN invocations of OT. The observations in Section 3
comparing the overhead of the HDOT protocol to that of
Yao’s construction, are relevant in this case, too. We also
believe that it is simpler to implement the m-point-SPIR
protocol compared to implementing a circuit-based solution.

Application I: private matching for cardinality threshold.
This is an example where it is important that 1P receives the
default value if no match is found. The scenario involves
two parties with private sets of m items, which want to find
out if the size of the intersection of the sets is greater than
some thresholds. The problem was defined in Freedman
et al. (2004) as a variant of the private matching protocol
which was the main subject of that paper. The solution there
requires the parties to run an OPE for each item xi of the
first party, in which the first party either learns a specific

value or a random value, depending on whether xi is in the
set of the second party. The parties then use Yao’s protocol
to evaluate a circuit whose input is the values learned by

1,P and which computes whether the size of the intersection
is greater than the threshold. We can use the m-point-SPIR
protocol to replace the OPE: Suppose that 1’sP inputs are
x1, …, xn and 2’sP inputs are y1, …, yn. Then for each xi the
parties run an m-point SPIR where 1P learns αi if xi ∈ {y1,
…, yn}, or αi + 1 otherwise, where α is a random number
chosen by 2.P We can then ask 1P to sum the values it
learned, and replace Yao’s protocol with an 1OT ,m as was
done in the binHDOT protocol of Section 4.1. (This was
impossible when an OPE was used, since in that case the
sum was random if there was even a single item of 1P
which was not in 2’sP set.)

Application II: lottery service. As an example of another
application of m-point-SPIR, consider a lottery service
where the server has a range of tickets, only a few of which
are winning tickets. The client uses the protocol to ‘buy’ a
ticket, but the client must not know, at least not until some
time in the future, whether this is a winning ticket. The
server’s database contains the prize corresponding to each
winning ticket, or the default ‘no prize’ value x (which, of
course, is associated to most of the tickets). It must be
ensured that a client that receives the value x cannot
identify that this is the default value. The server must not
learn which ticket was chosen by the buyer. (A lottery
service with many clients must handle many other different
issues which we do not describe, but m-point-SPIR seems
like a good approach for handling the purchase of tickets.)

7 Privacy-preserving computation of document
similarity

HDOT protocols can be used to decide, in a secure way,
whether two documents are similar (but not necessarily
identical). More specifically, we consider the problem of
two parties, each having a set of documents, that wish to
find similar documents while ensuring that no party reveals
any unnecessary data.

Motivation. An example of the need for privacy-preserving
computation of similarity is the challenge facing conference
committees that wish to detect the simultaneous submission
of the same paper (or close variants of it) to more than a
single conference. This practice is unacceptable, and
conference committees attempt to identify parallel
submissions, but they are hindered by the fact that papers
must be handled confidentially and therefore conference
committees cannot disclose the papers they have received to
other committees.

If there was a TTP which was trusted by different
conference committees then the problem could have been
solved by the committees sending the documents to the
TTP, which could then check them for similarity. Our goal
is to build a privacy-preserving similarity algorithms that is

34 A. Jarrous and B. Pinkas

run by the parties themselves and simulates the privacy
offered by the TTP.

Algorithms for computing similarity between two
documents were suggested by Broder et al. (1997) (and
subsequent work) and are based on computing the Jaccard
measure. The algorithms extract the words of each
document, and sample them using Min-wise hashing
(Broder et al., 2000) to create a set of words representing
the original document. They then compare the sampled sets
of the two documents. Similarity is defined as the size of the
intersection of the sets of sampled words divided by the size
of their union. Note that simple adversarial transformations
to the documents, such as reordering words or adding some
text, do not substantially affect the result of this class of
algorithms.

7.1 Preliminaries

In this section, we introduce the similarity algorithms, and
the cryptographic tools and notions used in our protocols.
We begin by defining Rabin’s fingerprinting scheme and
Min-wise hash functions. It is important to emphasise that in
this application we focus only on the case of semi-honest
adversaries.

7.1.1 Rabin’s fingerprinting scheme

Rabin’s fingerprinting scheme (Broder, 1993; Rabin, 1981)
is a method for mapping large objects to short tags. It is
based on arithmetic modulo an irreducible polynomial, P(·).
A fingerprinting family { : {0, 1} }kf= Ω→F (where Ω is a
set of objects), fulfils the following two properties:

a if f(A) ≠ f(B) then A ≠ B

b Pr[f(A) = f(B) | A ≠ B] ≈ 1/2O(K), for .Rf ∈ F

Rabin’s fingerprinting algorithm has an efficient
implementation over the field GF(2k), requiring a constant
amount of memory and a linear computation overhead (see
Broder, 1993; Rabin, 1981) for details.

7.1.2 Min-wise hash functions

The similarity algorithm uses sampling based on Min-wise
independent permutations (Broder et al., 2000). Briefly, a
set of permutations Π ⊆ Sn is Min-wise independent if for
any set X ⊆ [n] and any x ∈ X, when π is chosen at random
from Π it holds that

{ }() 1() .()
| |

π xπ X
X

= =Pr Min

Namely, the probability that an element becomes the
minimum element of the image of X under π is equal to all
elements in X.

In practice, one can approximate the usage of Min-wise
independent permutations by using pair-wise independent
linear hash functions of the form π(x) = ax + b (where a, b
are chosen at random and a ≠ 0). These functions are easy to

represent and are efficient to calculate, and, as claimed by
Broder et al. (2000) they perform well for practical
applications of document similarity.

7.1.3 Computing similarity

Exact definitions of similarity between documents were
given by Broder (2000), who investigated this problem for
an application of clustering web pages. There defined the
resemblance between documents, which is a number
between 0 and 1. A resemblance close to 1 indicates that the
two documents are ‘roughly the same’.

A first step in computing similarity is representing each
document D by a set of shingles ().S D Shingles are
unique sequences of tokens (which could be letters, words,
lines, etc.) in a document, that are grouped into overlapping
sets (Broder, 2000). Usually, all shingles have the same
length; for instance, if we define each token to be a word,
the four-shingling of the document =D (a, rose, is, a,
rose, is, a, rose) is the set ()S =D {(a, rose, is, a),
(rose, is, a, rose), (is, a, rose, is)}. [Shingling can also
be defined in other ways (Broder, 1997).]

Broder (2000) defined the resemblance of two
documents 1D and 2D (which is also known as the Jaccard
similarity coefficient), as

()
() ()
() ()

1 2
1 2

1 2
,

S S
r

S S
∩

=
∪

D D
D D

D D
 (1)

1 2(,)r D D measures the common features of both
documents by computing the size of the intersection of their
two sets of shingles divided by the size of the union of these
sets. Intuitively, the resemblance captures the degree to
which the two documents are similar. Notice that if two
documents are identical, 1 2 ,=D D then 1 2(,) 1,r =D D and
that if two documents are totally different, 1 2 ,∩ =D D φ
then 1 2(,) 0.r =D D

To simplify the computation, it is common to map
shingles into shorter, fixed-length numerical values using
Rabin’s fingerprinting algorithm (Rabin, 1981; Broder,
1993) and apply the rest of the computation to these values.

The process computing the resemblance uses the entire
document, this process is inefficient because it requires
large amounts of memory and runtime. Therefore, Broder
et al. suggested to improve the computation of similarity by
first sampling part of the shingles, using Min-wise hashing
functions (Broder, 1997, 2000; Broder et al., 2000), and
then computing the function r(·,·) of the sampled values.
Two different ways were suggested for sampling shingles of
a document:

• A single permutation is used to sample a subset of the
shingles of each document in the following way: each
shingle is mapped to a value by the permutation π, and
from each document we take the shingles that were
mapped to the n smallest values. The function r(·,·) is
then applied to these samples. [This algorithm is
detailed and analysed in Broder et al. (1997).]

 Secure computation of functionalities based on Hamming distance and its application to computing document 35

• Similarity can also be computed using multiple
permutations. Each permutation is used to choose the
shingle from each document that is mapped by it to the
smallest value. For each permutation, the two values
that are chosen by it from the two documents are
compared. We use this method, as is detailed and
justified in the text below.

Computing similarity using multiple permutations. We
assume that shingles are represented by values in a range of
size p. The computation of similarity uses a set of n
permutations {π0, π1, …, πn–1} chosen uniformly over the set
of Min-wise independent permutations of [p]. Computing
similarity operates in the following way:

1 For each document, the minimall according to each
permutation is sampled. Namely, the parties compute

1[(())]iπ S DMin and 2[(())],iπ S DMin where i ∈ {0,
…, n – 1} and where Min outputs the minimall value of
the set of its inputs.

2 The value 1 2(,)ψ D D is defined to be the number of
elements for which 1 2[(())] [(())].i iπ S π S=D DMin Min

3 The resemblance is defined as 1 2(,) / .ψ nD D

It is easy to see Broder (2000), that

()(){ } ()(){ }()
() ()
() ()

()

1 2

1 2
1 2

1 2
,

π π S π S

S S
r

S S

=

∩
= =

∪

D D

D D
D D

D D

Pr Min Min

 (2)

Therefore, the expected value of 1 2(,) /ψ nD D is
1 2(,),r D D and it can be used to estimate this value. This

provides a way for estimating the value of 1 2(,)r D D
(which does not require to compute the exact intersection of
union of the documents). An analysis of the variance of this
estimation appears in Broder (2000).

Our approach. We have chosen to use the multiple
permutations approach because the accuracy of this solution
has a smaller variance than that of the solution which is
based on a single permutation. Another important reason
that makes this solution preferable for our purposes is that it
requires to compare the item sampled by a certain
permutation from the first input which exactly one item, the
item sampled by this same permutation from the second
input. This property is useful for two reasons:

1 Implementing a privacy preserving version of the
second solution is easier than implementing a similar
variant of the first solution, since it requires checking
the equality of pairs of items, rather than computing the
intersection of larger sets.

2 In our last protocol each party first samples a set of
items from its own input, and then the protocol uses
only part of the sampled sets of both parties (without
letting the parties know which items are used by the
protocol). This is easier if we know that using the jth

element of the first set requires using the jth element of
the second set.

7.2 Problem statement

We consider a scenario with two parties: 1P which has
document 1D and 2P which has document 2.D Both parties
must run a protocol that outputs 1 if 1D is similar to 2 ,D
and output 0 otherwise. This must be done without revealing
any other information about the documents. We assume that
two documents are similar if (,)r A B is greater some
predefined threshold, which is a parameter set by the
parties.

We will describe three ideal scenarios for checking
similarity with a TTP. The first scenario does not leak any
information except for the result of whether (,)r A B is
greater than the threshold, while the second and third
scenarios reveal some additional information. We will then
describe two-party protocols that simulate these ideal
scenarios – namely, do not leak more information than in
the corresponding ideal scenario. (As can be anticipated, the
protocols corresponding to the second and third scenarios
will be more efficient than the protocol corresponding to the
first scenario.)

Ideal scenario 1 – Naive TTP. In this scenario, the TTP
receives both documents 1D and 2 ,D and computes the
similarity between them. The computation of the similarity
is based on the Jaccard similarity [equation (1)], applied
either to the entire documents, or to a sampling of the
shingles of each document (for instance, by sampling the
documents using multiple permutations and computing
similarity based on the sampled values).

Ideal scenario 2 – TTP with sampling by the parties (TTP
SbP). In this scenario, the sampling of the documents is
done by the parties themselves: both 1P and 2P perform the
sampling of their own documents and send the results to the
TTP. The TTP then evaluates similarity by applying, to the
sampled sets, the algorithm that computes similarity using
multiple permutations (described in Section 7.1.3).

This approach is more efficient than ideal scenario 1, but
it leaks some additional data since each party knows which
values of its set were used in evaluating the similarity. (In
the extreme case, if the size of the sampled subset is 1, then

1 2(,) 1r =D D implies that the specific sampled shingle
exists in both documents.)

Ideal scenario 3 – TTP with obscured sampling by the
parties, i.e., TTP with obscured SbP. This scenario is similar
to the previous one but it aims to somewhat obscure the
exact sampled shingles that are used to compute the
similarity. This is done in the following way:

1 Both parties sample k · n items from their documents
(where k > 1 and n are parameters) and send the
sampled items to the TTP.

36 A. Jarrous and B. Pinkas

2 The TTP chooses a random subset of n pairs of items
from these subsets and uses it to evaluate similarity.

The usage of part of the sampled elements to compute
similarity aims to improve the privacy of the protocol of
scenario 2, since no party knows for sure what elements
were used. However, some information does leak
(compared to the first protocol were all items are used for
computing similarity). It seems that a larger value of the
parameter k corresponds to better privacy, but the exact
privacy analysis is out of the scope of this paper.

7.3 Secure protocols

Secure protocols compute the functionality without
revealing more information than is revealed in the ideal
scenario. We first describe in brief a protocol for the first
ideal scenario. We then focus on protocols for the second
and third scenarios, since the first protocol requires
large communication and computation overheads as the
parties must apply cryptographic operations to the entire
documents. Note that even Broder et al.’s insecure protocol
is based on sampling the documents in order to reduce the
overhead of the protocol.

We describe protocols which compute similarity
between a pair documents. Section 7.4 discusses the
comparison of two sets of documents, looking for any pair
of similar documents that appear in both sets. Instead of
requiring the parties to compute O(N2) comparisons (for sets
of N documents), it suggests a more efficient protocol,
based on hashing into bins, which computes only O(N)
comparisons.

7.3.1 Protocols for ideal scenario 1

Using the full documents. If no sampling is done then the
protocol must compare the complete two sets of shingles
and output 1 if the size of their intersection is greater than
some threshold. This is exactly the task computed by the
private matching for cardinality threshold protocol of
Freedman et al. (2004) and therefore we could simply apply
this protocol to the shingle sets of the two parties. The
protocol requires computing a constant number of
homomorphic encryption operations for each shingle, and
computing a 1-out-of-2 oblivious transfer for each bit of the
representation of the shingle values (needed for computing a
Yao circuit). This results in at least mlogm 2

1OT s, for inputs
of m shingles. This overhead is almost linear, but the size of
the input here, m, is pretty large, since no sampling is
applied to the documents.

It is possible to relax the privacy requirements of the
protocol and enable it to output the size of the intersection
instead of evaluating whether the size of intersection is
larger than a threshold. In this case, the protocol can be
implemented using a set intersection protocol, which
computes the size of the intersection of two sets known to
the two parties (rather than computing the cardinality
threshold, which is a more complex operation). Two known
protocols for set intersection are that of Huberman et al.

(1999) [also described and analysed by Agrawal et al.
(2003)], and that of Freedman et al. (2004). The former was
proved to be secure only in the random oracle model,
whereas the latter was proved in the standard model.

7.3.2 A protocol for ideal scenario 2 – sampling by
parties

The protocol consists of a sampling step and a computation
step. First, the parties agree on n Min-wise independent
permutations. Then, each party samples its document by
itself using these n permutations, as described in
Section 7.1.3. The last step computes similarity, that is,
outputs 1 if the number of equal pairs is at least τ (where
0 ≤ τ ≤ n is a parameter). This is done by representing the
output of the n permutations as an n-letter word, defined
over an alphabet sufficiently large to contain the fingerprint
of the sampled shingles. Then the threshold protocol,

| |
1,0HDOT (, '),W τ W W− is run, where W and W′ are the words

representing the sets of shingles sampled by the
permutations from 1 2, ,D D respectively, and the protocol
outputs 1 if the Hamming distance is at most |W| – τ. (This
protocol is defined in Section 4.1 as one of the
straightforward applications of HDOT.)

7.3.3 A protocol for scenario 3 – obscured sampling
by the parties

As was discussed earlier, the previous protocol simulates a
setting where the TTP reveals to the parties the identities of
the sampled values that are used for computing similarity.
This privacy leakage might be somewhat reduced by letting
each party sample first a large set of elements (which it
knows), and then use a random subset of these elements for
evaluating similarity while keeping this subset hidden from
the other party. This approach is implemented by the
protocol described in Figure 4. The protocol uses an
additional parameter, k, (k > 1). Each party samples kn
words from its set, but only n of these words take part in the
final evaluation.

The protocol starts with each party sampling kn shingles
from its document, where both parties use the same set of
permutations for this task. Next, the parties compute
together a random list of kn homomorphic encryptions of
values α0, …, αk·n–1, of which n are encryptions of 1 and the
rest are encryptions of 0 (but no single party knows which
encryptions are of which value). They then execute an

0 1,EQV V protocol (of Section 4.1) for each of the kn pairs of
words. For each of these executions 2P chooses a random
value ri. 1P learns the value 1 i ir= +V α if the words are
equal, and if they are different it learns the value 0 .ir=V As
a result, the equality of input words only affects the results
of the n pairs which correspond to the αi values which equal
1. The two parties then run an oblivious transfer protocol
(similar to the one used in the last step of HDOT protocol)
to compute the output of the protocol. The protocol is
detailed in Figure 4.

 Secure computation of functionalities based on Hamming distance and its application to computing document 37

The proof of correctness is similar to that of the HDOT
protocol. The overhead of the protocol is about the same as
that of the document similarity protocol for scenario 2,
when that protocol is run with a sample size of k · n.
(Namely, the usage of a parameter k > 1 increases the
overhead by a factor of k compared to the previous protocol.
There is a smooth transition from the protocol of scenario 2,
which corresponds to setting k = 1, to the protocol of
scenario 3 which uses k > 1.) This observation was verified
in the experiments we conducted, detailed in Section 7.5.
More precisely, 1P performs nkℓ homomorphic encryptions
and nk decryptions, and 2P performs 2nkℓ encryptions. The
parties also run nk log(ℓ + 1) 2

1OT s. The communication
consists of O(nkℓ) encrypted items. The security analysis is
similar to that of the previous protocol.

7.4 Comparing many documents

We have introduced protocols that compute similarity
between two documents, but in many scenarios each party

has a set of documents and the parties wish to identify any
pair of similar documents (this is indeed the case of the
problem encountered by the programme committees, that
was the motivation of our research). Let us assume that each
party (committee) has n documents to compare with the
other party. A naive solution is to compare each pair of
documents of the two parties and execute the similarity
protocol n2 times. We would like to reduce this overhead.

The number of executions of the similarity protocol can
be indeed reduced if the parties compare only documents
which are likely to be similar. This can be done by mapping
documents to different ‘bins’ such that similar documents
are mapped to the same bin by both parties. In this case, it is
required only to compare the documents that are mapped to
a certain bin by the first party with documents mapped to
the same bin by the second party. Naturally, we must make
sure that no information about the documents is leaked or
revealed by the mapping to the bins.

Figure 4 The similarity protocol for ideal scenario 3

():
0 1 1 0 1 1Similarity ,, , ..., , , ...,k n

τ kn knw w w w w w− −′ ′ ′

Input: 1P has an input 〈w0, w1, …, wkn–1〉; 2P has an input 0 1 1 ,, , ..., knw w w −′ ′ ′ and both parties agree on a threshold τ.

Output: The protocol chooses at random a set of n of the kn words. 1P receives 1 if the number of equal words among these is at least τ,
otherwise it receives 0; 2P does not learn any output.

1P knows the decryption key to a homomorphic encryption scheme Epk.

 1 1P sends to 2P n homomorphic encryptions of 1, and (k – 1)n homomorphic encryptions of 0, ordered randomly.

 2 2P receives these kn encryptions and randomises their order. Call the resulting encryptions Epk(α0), …, Epk(αkn–1).

 Note that these two steps can be performed before the parties receive their inputs.
 3 For i ← 0 to (kn – 1)
 2P chooses a random value ,i Rr ∈ F computes Epk(ri) and Epk(ri + αi), and both parties execute the protocol

(), () (,).pk i i pk iE r E r i iEQ w w+ ′α In this protocol 1P learns Epk(ri + αi) if ,i iw w′= and learns Epk(ri) otherwise.

 At the end of this step, 1P obtains the values {E(β0), …, E(βkn–1)}, where

,

1

or 0
, and 1

i i i i
i

i i i i

r w w
r w w+

′≠ =⎧
= ⎨ ′= =⎩

α
β

α

 (Note that the equality of the inputs affects the value of βi only when αi = 1.)
 4

2P sums the r values modulo n + 1 to obtain
1

0
mod(1).

kn
r iσ r n

−
= +∑

 5
1P sums the β values and decrypts the result to obtain

1

0
mod(1).

kn
iσ n

−
= +∑β β (Note that this value is equal to σr plus the

number of indices i in which i iw w′= and αi = 1.)

 6 Both parties execute an 1
1OTn+ protocol with the following inputs:

 • 1P is the receiver and its input is σβ mod (n + 1).

 • 2P is the sender and its input is {X0, …, Xτ–1, Xτ, …, Xn–1, Xn} such that

()1, if mod(1)
0, Otherwise

r
i

n τi σ
X

+ ≥⎧ −
= ⎨
⎩

 1P receives the result of the OT protocol; 2P does not receive any output.

38 A. Jarrous and B. Pinkas

To categorise the documents we search for distinctive
properties that are likely to be the same for two version of a
paper submitted to two conferences. In the programme
committee example we can assume that the set of authors of
a paper has not changed, and it is therefore possible to use
an ordered list of the names of authors of each document as
a distinctive property. (If we suspect that authors may add
spurious names to their document, it is possible to use each
author name as a separate index and map a document with ℓ
authors to ℓ different bins.) The mapping to bins is
performed using a random hash function with a range of
size B, applied to the set of authors of each paper. It has
been shown (Freedman et al., 2004) that if the hash function
maps each item to a random bin there is a high probability
(over the selection of the hash function) that each
bin contains at most / ((/) log log)M n B n B B B= + +O
elements (see, e.g., Freedman et al., 2004).

After mapping the documents to the bins, both parties
need only compare the documents that have been
categorised to the same bin by both of them. It is important
that no party learns the number of the documents in each of
the bins of the other party; to ensure this, each party must
add several random documents to each of its bins such that
the number of documents in each bin is exactly M = n / B +

((/) log log).n B B B+O

Overhead. After mapping the documents to bins, the
parties need to compare the documents that are mapped to
the same bin by both parties. Therefore, the total
number of comparisons between documents is B · M2 = B ·

2(/ ((/) log log)) .n B n B B B+ +O If we choose B to be n /
log n, the similarity protocol is executed (log)n nO times.
This analysis is asymptotic. For specific values of n, the
parties should search for the value of B that produces the
best overhead.

7.5 Implementation and experiments

Configuration. We implemented the document similarity
protocol using Java 1.5. The experiments used the following
settings:

1 Homomorphic encryption was done using Paillier’s
method, with a ring Zn of size 1,024 bits

2 the sizes of the parameters p and q for the OT protocol
[based on the Bellare-Micali construction (Bellare and
Micali, 1990)] were 1,024 and 160 bits, respectively

3 the shingle size was seven letters

4 we used Rabin’s algorithm to generate a fingerprint of
32 bits, but only 31 bits were utilised (the ideal size of
the words should be 2d – 1, for any d).

The experiments were performed using two machines, each
with a 2.8 GHz Pentium D processors and 1 GB of RAM,
running the Linux OS.

Results. We used two PDF files, with a similarity of about
85%. Each file contained about 9,500 words in 35 pages.
Sampling was performed where the sample size was n = 15,
31, 63, …, 255, and the privacy parameter was k = 1, 2, …,
8.

Figure 5 shows the runtime of the protocol for ideal
scenario 2 (where k = 1, or running HDOT protocol). The
points represent the total runtime of the protocol, as we can
see, the graph is linear in the size of the sample n. Figure 6
presents the runtime of the protocol for ideal scenario 3 (for
n = 255 and k = 1, …, 8), where the bars represent the
runtime spent on running binHDOT invocations, namely,
runtime spent on comparing binary words, and the points
represent the total runtime spent in each execution of the
protocol. The graph is linear in k and demonstrates that most
of the runtime is spent on comparing words (note that the
bars are very close to the line.) Both graphs agree with the
observation that the runtime is linear in the size of the
samples.

Figure 5 Run time of HDOT

 Secure computation of functionalities based on Hamming distance and its application to computing document 39

Analysing the runtime of the different parts of the protocol
reveals that, on average, comparing two 31-bit words
(ℓ = 31) took 568 msec, where 24 msec were spent counting
equal bits and 540 msec were spent on the OT protocol. The
first item corresponds to ℓ homomorphic additions, and the
second to 5 = log(ℓ + 1) OTs executed one after the other,
with an average time of about 110 msec per OT. In the
preprocessing step, each homomorphic encryption took
about 7msec. This observation shows that the overhead of
OT (which involves communication between the parties) is
much larger than that of a homomorphic encryption. Note
also that with a running time of about 0.56 sec for
comparing every pair of words, the overall running time of
the protocol, which compares a few hundred words, is
reasonable, although not instantaneous.

Acknowledgements

We would like to thank Gil Segev and Kobbi Nissim for the
helpful comments they provided on an earlier version of this
work.

Supported by the SFEROT project funded by the
European Research Council (ERC).

References
Agrawal, R., Evfimievski, A.V. and Srikant, R. (2003)

‘Information sharing across private databases’, in
Halevy, A.Y., Ives, Z.G. and Doan, A. (Eds.): SIGMOD
Conference, ACM, pp.86–97.

Aiello, W., Ishai, Y. and Reingold, O. (2001) ‘Priced oblivious
transfer: how to sell digital goods’, in Advances in Cryptology
– Eurocrypt ‘01, pp.119–135, Springer-Verlag, London, UK.

Beaver, D. (1996) ‘Correlated pseudorandomness and the
complexity of private computations’, in STOC, pp.479–488.

Bellare, M. and Micali, S. (1990) ‘Non-interactive oblivious
transfer and applications’, in Advances in Cryptology –
Crypto ‘89, pp.547–557, Springer-Verlag, London, UK.

Ben-David, A., Pinkas, B. and Nisan, N. (2008) ‘Fairplaymp – a
system for secure multi-party computation’, in ACM
Conference on Computer and Communications Security –
ACM CCS 2008, ACM, October.

Ben-Or, M., Goldwasser, S. and Wigderson, A. (1988)
‘Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract)’, in STOC,
pp.1–10, ACM.

Blackburn, S., Blake-Wilson, S., Burmester, M. and Galbraith, S.
(1998) ‘Shared generation of shared RSA keys’, University of
Waterloo Technical report, CORR, pp.98–19.

Blake, I.F. and Kolesnikov, V. (2006) ‘Conditional encrypted
mapping and comparing encrypted numbers’, in
Crescenzo, G.D. and Rubin, A.D. (Eds.): Financial
Cryptography and Data Security, 10th International
Conference, FC 2006, Anguilla, British West Indies, Revised
Selected Papers, Lecture Notes in Computer Science,
Springer, 27 February–2 March, Vol. 4107, pp.206–220.

Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J. and
Toft, T. (2006) ‘A practical implementation of secure
auctions based on multiparty integer computation’, in
Crescenzo, G.D. and Rubin, A.D. (Eds.): Financial
Cryptography and Data Security, 10th International
Conference, FC 2006, Anguilla, British West Indies, Revised
Selected Papers, Lecture Notes in Computer Science,
Springer, 27 February–2 March, Vol. 4107, pp.142–147.

Boneh, D. (Ed.) (2003) Advances in Cryptology – CRYPTO 2003,
Proceedings, Lecture Notes in Computer Science, Springer,
Vol. 2729.

Broder, A.Z. (1993) Some Applications of Rabin’s Fingerprinting
Method, pp.143–152, Springer-Verlag.

Broder, A.Z. (1997) ‘On the resemblance and containment of
documents’, in SEQUENCES ‘97: Proceedings of the
Compression and Complexity of Sequences 1997, IEEE
Computer Society, Washington, DC, USA, p.21.

Broder, A.Z. (2000) ‘Identifying and filtering near-duplicate
documents’, in Giancarlo, R. and Sankoff, D. (Eds.):
Proceedings on Combinatorial Pattern Matching, 11th
Annual Symposium, CPM 2000, Lecture Notes in Computer
Science, Montreal, Canada, Springer, 21–23 June, Vol. 1848,
pp.1–10.

Broder, A.Z., Charikar, M., Frieze, A.M. and Mitzenmacher, M.
(2000) ‘Min-wise independent permutations’, J. Comput.
Syst. Sci., Vol. 60, No. 3, pp.630–659.

Broder, A.Z., Glassman, S.C., Manasse, M.S. and Zweig, G.
(1997) ‘Syntactic clustering of the web’, Computer Networks,
Vol. 29, Nos. 8–13, pp.1157–1166.

Cachin, C., Micali, S. and Stadler, M. (1999) ‘Computationally
private information retrieval with polylogarithmic
communication’, in EUROCRYPT, pp.402–414.

Camenisch, J. and Shoup, V. (2003) ‘Practical verifiable
encryption and decryption of discrete logarithms’, in
Boneh, D. (Ed.): Advances in Cryptology – CRYPTO 2003,
Proceedings, Lecture Notes in Computer Science, Springer,
Vol. 2729, pp.126–144.

Camenisch, J., Neven, G. and Shelat, A. (2007) ‘Simulatable
adaptive oblivious transfer’, in Naor, M. (Ed.): Proceedings
on Advances in Cryptology – EUROCRYPT 2007, Lecture
Notes in Computer Science, Barcelona, Spain, Springer,
20–24 May, Vol. 4515, pp.573–590.

Canetti, R. (2000) ‘Security and composition of multiparty
cryptographic protocols’, J. Cryptology, Vol. 13, No. 1,
pp.143–202.

Chang, Y-C. (2004) ‘Single database private information retrieval
with logarithmic communication’, in Wang, H., Pieprzyk, J.
and Varadharajan, V. (Eds.): ACISP, Lecture Notes in
Computer Science, Vol. 3108, pp.50–61, Springer.

Charikar, M.S. (2002) ‘Similarity estimation techniques from
rounding algorithms’, in STOC ‘02: Proceedings of the
Thirty-fourth Annual ACM Symposium on Theory of
Computing, ACM, New York, NY, USA, pp.380–388.

Cramer, R., Damgård, I. and Schoenmakers, B. (1994) ‘Proofs of
partial knowledge and simplified design of witness hiding
protocols’, in CRYPTO ‘94: Proceedings of the 14th Annual
International Cryptology Conference on Advances in
Cryptology, Springer-Verlag, London, UK, pp.174–187.

Crescenzo, G.D. and Rubin, A.D. (Eds.) (2006) Financial
Cryptography and Data Security, 10th International
Conference, FC 2006, Anguilla, British West Indies, Revised
Selected Papers, Lecture Notes in Computer Science,
Springer, 27 February–2 March, Vol. 4107.

40 A. Jarrous and B. Pinkas

Damgård, I. and Jurik, M. (2001) ‘A generalisation, a
simplification and some applications of Paillier’s probabilistic
public-key system’, in Kim, K. (Ed.): Public Key
Cryptography, Lecture Notes in Computer Science,
Vol. 1992, pp.119–136, Springer.

Even, S., Goldreich, O. and Lempel, A. (1982) ‘A randomized
protocol for signing contracts’, in Advances in Cryptology –
Crypto ‘82, pp.205–210.

Fagin, R., Naor, M. and Winkler, P. (1996) ‘Comparing
information without leaking it’, Communications of the ACM,
Vol. 39, No. 5, pp.77–85.

Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J. and
Wright, R.N. (2006) ‘Secure multiparty computation of
approximations’, ACM Transactions on Algorithms, Vol. 2,
No. 3, pp.435–472.

Freedman, M.J., Nissim, K. and Pinkas, B. (2004) ‘Efficient
private matching and set intersection’, in Cachin, C. and
Camenisch, J. (Eds.): EUROCRYPT, Lecture Notes in
Computer Science, Vol. 3027, pp.1–19, Springer.

Gentry, C. and Ramzan, Z. (2005) ‘Single-database private
information retrieval with constant communication rate’, in
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C. and
Yung, M. (Eds.): Automata, Languages and Programming,
32nd International Colloquium, ICALP 2005, Lecture Notes
in Computer Science, Vol. 3580, pp.803–815, Springer.

Gertner, Y., Ishai, Y., Kushilevitz, E. and Malkin, T. (1998)
‘Protecting data privacy in private information retrieval
schemes’, in STOC ‘98: Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, ACM, New York,
NY, USA, pp.151–160.

Giancarlo, R. and Sankoff, D. (Eds.) (2000) Proceedings on
Combinatorial Pattern Matching, 11th Annual Symposium,
CPM 2000, Lecture Notes in Computer Science, Montreal,
Canada, Springer, 21–23 June, Vol. 1848.

Goethals, B., Laur, S., Lipmaa, H. and Mielikinen, T. (2004) ‘On
private scalar product computation for privacy-preserving
data mining’, in Proc. of the Seventh Annual International
Conference in Information Security and Cryptology, LNCS,
pp.104–120, Springer-Verlag.

Goldreich, O. (2004) Foundations of Cryptography, Basic
Applications, Vol. 2, Cambridge University Press, New York,
NY, USA.

Goldreich, O., Micali, S. and Wigderson, A. (1987) ‘How to play
any mental game or A completeness theorem for protocols
with honest majority’, in Proceedings of the 19th Annual
Symposium on Theory of Computing, May, pp.218–229.

Green, M. and Hohenberger, S. (2007) ‘Blind identity-based
encryption and simulatable oblivious transfer’, in
ASI-ACRYPT, pp.265–282.

Hazay, C. and Lindell, Y. (2008) ‘Efficient oblivious polynomial
evaluation and transfer with simulation-based security’,
Manuscript.

Huberman, B.A., Franklin, M.K. and Hogg, T. (1999) ‘Enhancing
privacy and trust in electronic communities’, in ACM
Conference on Electronic Commerce, pp.78–86.

Indyk, P. and Woodruff, D.P. (2006) ‘Polylogarithmic private
approximations and efficient matching’, in Halevi, S. and
Rabin, T. (Eds.): TCC, Lecture Notes in Computer Science,
Vol. 3876, pp.245–264, Springer.

Ishai, Y., Kilian, J., Nissim, K. and Petrank, E. (2003) ‘Extending
oblivious transfers efficiently’, in Boneh, D. (Ed.): Advances
in Cryptology – CRYPTO 2003, Proceedings, Lecture Notes
in Computer Science, Springer, Vol. 2729, pp.145–161.

Jarecki, S. and Shmatikov, V. (2007) ‘Efficient two-party secure
computation on committed inputs’, in Naor, M. (Ed.):
Proceedings on Advances in Cryptology – EUROCRYPT
2007, Lecture Notes in Computer Science, Barcelona, Spain,
Springer, 20–24 May, Vol. 4515, pp.97–114.

Kushilevitz, E. and Ostrovsky, R. (1997) ‘Replication is not
needed: single database, computationally-private information
retrieval’, in FOCS ‘97: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science (FOCS ‘97),
IEEE Computer Society, Washington, DC, USA, p.364.

Lindell, Y. and Pinkas, B. (2007) ‘An efficient protocol for secure
two-party computation in the presence of malicious
adversaries’, in Naor, M. (Ed.): Proceedings on Advances in
Cryptology – EUROCRYPT 2007, Lecture Notes in Computer
Science, Barcelona, Spain, Springer, 20–24 May, Vol. 4515,
pp.52–78.

Lindell, Y., Pinkas, B. and Smart, N.P. (2008) ‘Implementing two-
party computation efficiently with security against malicious
adversaries’, in Ostrovsky, R., Prisco, R.D. and Visconti, I.
(Eds.): SCN, Lecture Notes in Computer Science, Vol. 5229,
pp.2–20, Springer.

Lipmaa, H. (2005) ‘An oblivious transfer protocol with
log-squared communication’, in Zhou, J., Lopez, J.,
Deng, R.H. and Bao, F. (Eds.): The 8th Information Security
Conference (ISC’05), Lecture Notes in Computer Science,
20–23 September, Vol. 3650, pp.314–328, Springer-Verlag.

Malkhi, D., Nisan, N., Pinkas, B. and Sella, Y. (2004) ‘Fairplay –
secure two-party computation system’, in USENIX Security
Symposium, pp.287–302, USENIX.

Meier, R. and Przydatek, B. (2006) ‘On robust combiners for
private information retrieval and other primitives’, in
Dwork, C. (Ed.): Advances in Cryptology – CRYPTO ‘06,
Lecture Notes in Computer Science, Vol. 4117, pp.555–569,
Springer-Verlag, August.

Naor, M. (Ed.) (2007) Proceedings on Advances in Cryptology –
EUROCRYPT 2007, Lecture Notes in Computer Science,
Barcelona, Spain, Springer, 20–24 May, Vol. 4515.

Naor, M. and Nissim, K. (2001) ‘Communication preserving
protocols for secure function evaluation’, in STOC,
pp.590–599.

Naor, M. and Pinkas, B. (1999) ‘Oblivious transfer and polynomial
evaluation’, in STOC ‘99: Proceedings of the Thirty-first
Annual ACM Symposium on Theory of Computing, ACM,
New York, NY, USA, pp.245–254.

Naor, M. and Pinkas, B. (2001) ‘Efficient oblivious transfer
protocols’, in SODA ‘01: Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA,
pp.448–457.

Naor, M. and Pinkas, B. (2005) ‘Computationally secure oblivious
transfer’, J. Cryptology, Vol. 18, No. 1, pp.1–35.

Paillier, P. (1999) ‘Public-key cryptosystems based on composite
degree residuosity classes’, in EUROCRYPT, pp.223–238.

Paillier, P. (2000) ‘Trapdooring discrete logarithms on elliptic
curves over rings’, in Okamoto, T. (Ed.): ASIACRYPT,
Lecture Notes in Computer Science, Vol. 1976, pp.573–584,
Springer.

Peikert, C., Vaikuntanathan, V. and Waters, B. (2008) ‘A
framework for efficient and composable oblivious transfer’,
in Wagner, D. (Ed.): CRYPTO, Lecture Notes in Computer
Science, Vol. 5157, pp.554–571, Springer.

 Secure computation of functionalities based on Hamming distance and its application to computing document 41

Pinkas, B., Schneider, T., Smart, N.P. and Williams, S.C. (2009)
‘Secure two-party computation is practical’, in Matsui, M.
(Ed.): ASIACRYPT, Lecture Notes in Computer Science, Vol.
5912, pp.250–267, Springer.

Poupard, G. and Stern, J. (1998) ‘Generation of shared RSA keys
by two parties’, in ASIACRYPT ‘98: Proceedings of the
International Conference on the Theory and Applications of
Cryptology and Information Security, pp.11–24, Springer-
Verlag.

Rabin, M.O. (1981) ‘Fingerprinting by random polynomials’,
Harvard Aiken Computational Laboratory TR-15-81.

Stern, J.P. (1998) ‘A new and efficient all-or-nothing disclosure of
secrets protocol’, in Advances in Cryptology ASIACRYPT 98,
pp.357–371, Springer-Verlag.

Wright, R. and Yang, Z. (2004) ‘Privacy-preserving Bayesian
network structure computation on distributed heterogeneous
data’, in Proc. of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp.713–718, ACM Press.

Yao, A.C-C. (1986) ‘How to generate and exchange secrets
(extended abstract)’, in FOCS, pp.162–167, IEEE.

Notes
1 The full simulation definition is preferable to the so called

‘semi-simulatable security’ definition, which only guarantees
privacy, but not correctness, in the malicious case. That
definition was commonly used for two-party protocols such
as oblivious transfer and PIR. It does not enable, however, to
use the composition theorem in order to model the resulting
building-block protocols as simple calls to a trusted oracle.
There are recent efficient constructions of generic protocols
which are secure according to this definition (by Lindell and
Pinkas, 2007; Jarecki and Shmatikov, 2007), and there are
even implementations of the former protocol (Lindell et al.,
2008; Pinkas et al., 2009).

2 For example, the protocol in Indyk and Woodruff (2006)
applies the Naor-Nissim (Naor and Nissim, 2001) protocol to
a circuit which computes vector operations over the Real
numbers and samples from a Bernoulli distribution; in
addition it uses symmetric PIR protocols.

3 In Blake and Kolesnikov (2006), it was shown how to
implement a protocol which transfers one of two strings if
w > w′, and transfers the other string if w < w′ (if w = w′ the
output is random). It is possible to compute the EQ
functionality by combining that protocol with a protocol
which outputs a specific value if w = w′ and a random value
otherwise.

4 After the first step of the protocol the sender has ℓ
homomorphic encryptions, one for each letter location, which
are each equal to 0 or 1 depending on whether the letters in
that location are identical. This is essentially the data that the
receiver sends to the sender in many PIR protocols (e.g.,
Stern, 1998; Chang, 2004; Gentry and Ramzan , 2005
Lipmaa, 2005) where the receiver sends encryptions of the
bits of its input. Therefore, it seems natural to use here one of
these protocols and perhaps remove one communication
round from the protocol. However, these PIR protocols were
designed for a setting where the server has a database of size
2ℓ, whereas the range of possible outputs of our protocol
contains only ℓ + 1 values. As a result our protocol can use a
1-out-of-(ℓ + 1) OT which is more efficient in terms of both
computation and communication.

5 The COTCD protocol is identical to the Jarecki and
Shmatikov (JS) (2007) protocol, with an addition of a
preliminary step and a verification step. In the preliminary
step, both parties receive their auxiliary inputs: the sender
receives a value Δ, which is the difference that must hold
between its input values, and the receiver receives the
committed value of Δ. In the verification step the sender
proves to the receiver in zero-knowledge that the committed
values, m0, m1, have a difference ±Δ. It is important to note
that the receiver knows only Com(Δ) and does not learn Δ.

Appendix

A committed oblivious transfer with constant
difference

In this Appendix, we describe a protocol, ‘COTCD’, which
is used as a black box in our binHDOT protocol. The
protocol performs the following operations:

• Input: The sender SP has an auxiliary input Δ, and the
receiver RP has a commitment of this value, Com(Δ). In
addition, the sender has as input two values (m0, m1)
satisfying |m0 – m1| = Δ, and the receiver has an input
σ ∈ {0, 1}.

• Output: The receiver learns mσ. In addition, SP proves
to RP that its input (m0, m1) has a difference that is
equal to ± Δ, namely that |m0 – m1| = Δ.

The protocol is similar to committed OT, i.e., to an OT
protocol where the parties commit to their inputs, each party
sends its commitments to the other party, and each party
verifies that the other party’s values are equal to the
committed values. In addition, the protocol has an
additional auxiliary input Δ known to the sender, and a
commitment to Δ which is known to the receiver. The
protocol ensures that the difference between the two inputs
of the sender is equal to ± Δ.

We construct the protocol based on the Jarecki and
Shmatikov (2007) committed OT protocol, which is secure
against malicious adversaries and is UC-secure in the
common reference string model under the DCR assumption
(which is also the assumption used to argue about the
security of Paillier encryption). The commitment scheme of
the protocol is based on the CS encryption scheme
(Camenisch and Shoup, 2003), which is, essentially, a
semantically secure homomorphic cryptosystem. The
homomorphism property is used by our protocol to prove
that the difference between the inputs is as required.

We base our construction on the same steps as those of
the Jarecki and Shmatikov (JS) (2007) protocol, where we
add a preliminary step and a verification step. In the
preliminary step, both parties receive their auxiliary inputs:
the sender receives a value Δ, which is the difference
between its input values, and the receiver receives the
committed value of Δ. In the verification step, the sender
proves to the receiver that the committed values, (m0, m1),
have a difference of exactly ± Δ. It is important to note that
the receiver knows only Com(Δ) and does not know Δ.

42 A. Jarrous and B. Pinkas

To sum up, the main changes we make to the JS the
protocol are the following:

1 Before starting the protocol, SP receives Δ while RP
receives the commitment of Δ.

2 Before the third step of the protocol, where the receiver
learns one of the sender’s inputs, the receiver checks

whether ?
0 1| | .m m− =Δ Since RP has the committed

values only, SP proves to RP in zero-knowledge that
the committed values satisfy this relation.

We start by introducing the tools and notations of the
protocol, describing the ideal functionality implemented by
the protocol in Figure 7 and them describe the protocol
itself in Figure 8.

A.1 Cryptographic tools and notations

The protocol is based on the same steps as the Jarecki and
Shmatikov (JS) protocol, and uses the same cryptographic
notation, primitives and tools, which we brie
y review here.

A.1.1 Camenish-Shoup (CS) encryption scheme

The CS encryption scheme (Camenisch and Shoup, 2003) is
defined as follows.

Common reference string (CRS). A TTP generates a safe
RSA modulus n = pq, where p = 2p′ + 1, q = 2q + 1, |p| =
|q|, p ≠ q and p, q, p′, q′ are all primes. In addition it
generates random element 2

*
ng ′∈ and an element g =

(g′)2n. The common reference string is (n, g), which also
defines an element α = 1 + n. Also, we treat all
multiplications and exponentiations as operation in 2

* .n
It is possible to replace the common reference string by

a secure computation by the two parties which calculates the
values defined (n, g) by the string. This computation, secure
against malicious adversaries, can be done using the results
of Blackburn et al. (1998) or of Poupard and Stern (1998).

Key generation. The private key is a random triple x1, x2, x3
∈ 2

4 .0, n⎡ ⎤⎣ ⎦ The public key is PK = (n, g, γ, , φ, hk)

where 1 2 3, , x x xγ g g g += = =φ and hk is a key of a
colision-resistant keyed hash function .H

Encryption. Consider a plaintext 2, .n n
nm ⎡ ⎤∈ −⎣ ⎦ A CS

encryption of m with PK and label L, which is denoted
()L

PK mCSenc is a tuple (u, e, v), where u = gr, e = αmγr and
(, ,)(()),u e L rv abs= Hφ hk for 1 2(/) .xe u ((abs(a) = a if 2

na <

and n – a if 2 .)na ≥

Decryption. For a ciphertext (u, e, v), if abs(v) = v and
2 32((, ,)) 2 ,x u e L xu v+ =Hhk then compute 1 2(/) .xm e u= If n

does not divide 1,m − then reject; Otherwise compute

1m
nm −′ = (over the integers), / 2modm m n′ ′= and m = m′

rem n.

A.1.2 Simplified Camenish-Shoup (sCS) (2007)
encryption scheme

Jarecki and Shmatikov (2007) proposed a homomorphic,
semantically secure variant of CS cryptosystem (Camenisch
and Shoup, 2003), which uses a shorter key and allows
efficient proofs that a committed plaintext is encrypted
under a committed key. This variant is denoted sCS.

The group setting (n, g) is the same, and k, k′ are
parameters that control the quality of the soundness and
zero-knowledge properties of proof systems associated with
the sCS encryption. Let | |

2 .nk ′′ = The sCS scheme requires
that 2k + k′ < k″ and k < p′, q′.

Key generation. The private key is x ∈ [0, 2k″] and the
public key is y = gx.

Encryption. The encryption of m with public key y is
sCSency(m) = (u, e), where u = gr and e = αmyr, 4 .0, n

Rr ⎡ ⎤∈ ⎣ ⎦

The encryption result is in 2 2 .,n n⎡ ⎤−⎣ ⎦

Decryption. The decryption process is the same as in CS
decryption, but omitting the CCA checks on v and using x
instead of x′ in decrypting (u, e).

A.1.3 Commitments

Similar to the JS protocol, we use the CS and sCS
encryption scheme as a commitment scheme, where
PK = (n, g, γ, , φ, hk) is a public key which is chosen by a
TTP and the security of the commitment scheme requires
the CRS model. The commitment on message m is simply
its encryption (),L

PK m=Com Csenc and the decommitment
is the tuple (r, m, L) used to generate this encryption.

A.1.4 Efficient concurrently secure ZK proof
systems in the CRS model

We use in our COTCD protocol ZK proofs of knowledge in
the CRS model, which are described in the JS paper (2007).
The proof systems are three-round honest verifier
zero-knowledge (HVZK) proof systems, and are
computationally sound and statistical zero-knowledge with
a straight line simulator. They can be used together with the
compilation technique of Cramer et al. (1994) in order to
generate proofs with similar properties for any disjunctive
and conjunctive formula of the atomic statements
expressible by such proofs. We use the following proof
systems:

• {(, , ,) |g X g X=DLEQ there exists x such that
2 2xX g= and 2 2 }.xX g= Namely, this is a proof of

the equality of the discrete logarithms of X and X to
the bases g and ,g respectively. (This proof is a

 Secure computation of functionalities based on Hamming distance and its application to computing document 43

straightforward adaptation to the setting of group 2
*
n

of the standard proof for equality of discrete
logarithms.)

• Cot = {(i, e′, u′, e, u, y, C)| there exist m, w, s, r such
that C2 = α2mγ2w, e′2 = e2eα2m–i*2sy2r, and u′2 = u2sy2r}. In
other words, m is committed in the sCS commitment C,
and (u′, e′) is a correct re-encryption of m (performed
by the sender in the COTCD protocol), given the (y, u,
e) tuple sent by the receiver. [This proof system was
described in Jarecki and Shmatikov (2007) where it was
denoted Cot, and is an adaptation of the proof systems
presented in Camenisch and Shoup (2003).]

• Com = {(Com, ids)} there exist m, r s.t. Com = (u, C, v)
where u = gr, C = αmγr, and (, ,)() }.u C rv = Hφ hk ids In
other words, Com is a properly formed CS commitment
to some message m with label ids. [This proof is a
straightforward simplification of the verifiable
encryption proof system of the CS scheme in
Camenisch and Shoup (2003).]

A.2 The COTCD functionality

The ideal functionality implemented by the COTCD
protocol is described in Figure 7. It is similar to the
committed OT functionality of JS defined in Jarecki and
Shmatikov (2007), but in addition it requires that the
difference between the two server inputs is ±Δ. The protocol
implementing the COTCD functionality is described in
Figure 8 below. It is almost identical to the committed OT
protocol of Jarecki and Shmatikov (2007), with the addition
of a commitment to Δ, and a verification step which checks
that the inputs have a difference of ±Δ. (This step is
highlighted in the protocol below.)

The proof of security is similar to that of the committed
OT protocol in Jarecki and Shmatikov (2007). The proofs in
the verification step can be run in parallel to Step 2 and
therefore the number of rounds remains as in the JS
protocol.

Jarecki and Shmatikov (2007)presented the crucial
aspects of the proof and the idea behind it, we provide a
proof of security of the protocol including our changes.

Theorem 5: The protocol securely computes COTCD in the
presence of malicious adversaries.

Proof: As in Jarecki and Shmatikov (2007), we prove the
security of the protocol using simulator in the hybrid model,
assuming that zero-knowledge proofs are performed by a
trusted oracle (or party). The simulator acts as an honest
party and executes the protocol against malicious parties
with random inputs, such that, it simulates the execution in
order to learn the input of the other party.

We compare the execution of the protocol between both
parties to an execution with a TTP, where TTP executes the
functionality introduced in Figure 7.

SP is corrupted. The idea of the proof is extracting the
input of SP by the simulator. The simulator plays as an

honest ,RP in addition, it plays a trusted oracle that chooses
the CS public key, PK, which is embedded in the CRS and
learns both inputs of .SP Sim chooses PK such it knows
SK, CS private key, in order to decrypt the commitments of

.A Finally, it sends both inputs to the TTP. Since CS
encryption scheme is semantically secure, SP cannot learn
the input of RP or distinguish between real simulation and
real execution of the protocol.

More formally, let A be an adversary controlling ,SP
we construct a simulator, Sim, that generates the view of
both parties, A and ,RP in the hybrid model, given only
access to A and to the ideal model.

Also, we assume that Sim

• Plays in the beginning of the protocol a trusted oracle,
chooses (SK, PK) of CS encryption scheme and sends
PK to .A

• Receives cidΔ = ComΔ.

1 Simulation of Commit, Sim receives from A the
following:

()
()

,0 0

,1 1

,, ,

, ,

m

m

A A A

A A A

ComMsg ids Com

ComMsg ids Com

 In addition, Sim chooses randomly σSim ∈R {0, 1},
simulates an honest RP and sends ComMsgSim, idsSim,
ComSim.

2 Simulation of COTCD Step 1, Sim acts as an honest
,RP

• Sets idsSim = (,A Sim, sid, cidΔ, cidSim,

,0 ,1,)cid cidA A

• Retrieves ComSim = (u, C, v) and its decommitment
r.

 As in the protocol, it sends to A the following,
COTCDMsg1Sim, idsSim, (u, e, y).

 Sim acts as an honest ,RP performs the same steps,
where by the end of the step, Sim runs zero-knowledge
proof of ZKDLEQ(g, u, γ, y, C/e) ∧ ZKCom(PK,
ComSim, (Sim, cidSim)), with A as the verifier.

3 Simulation of COTCD Step 2, as previous steps, Sim
acts an honest ,RP retrieves both commitments of m0,
m1, which committed by .A Sim plays as the verifier in
the zero-knowledge proof of ZKCot(0, e0, u0, e, u, y,
C0) ∧ ZKCot(1, e1, u1, e, u, y, C1) ∧ ZKCom

,0 ,1(, ,))cidA AACom ∧ ZKCom ,1 ,1(, ,)).cidA AACom
If Sim does not accept the proofs, it sends ⊥ to the
trusted party and halts.

 Otherwise, Sim proceeds in the execution of the
protocol.

4 Simulation of verification step. Sim computes
Com(m0 – m1) and Com(m1 – m0), using homomorphic

44 A. Jarrous and B. Pinkas

properties of CS scheme. Sim plays as the verifier in
the zero-knowledge proof of ZKCot(1, e0/e1, u0/u1, e, u,
y, CΔ) ∨ ZKCot(1, e1/e0, u1/u0, e, u, y, CΔ). If Sim does
not accept the proofs, it sends ⊥ to the trusted party

and halts.

 Otherwise, if Sim accepts the proofs, extracts m0, m1
from the commitments since it knows the private SK of
CS encryption scheme.
• If in any step, A sends ⊥ or fail in verifying in the

zero-knowledge proofs, Sim sends ⊥ to the trusted
party and halts the execution.

• If Sim learns the inputs of ,A namely, A does
not cheat, Sim sends to the trusted party m0, m1,
outputs whatever A outputs and halts.

After showing the simulation, where Sim learns the input of
A (or),SP we show that the joint output distribution of A
and SP in the hybrid model protocol execution is
indistinguishable from the output of Sim and SP in the ideal
world simulation.

In any step, A could send ⊥ to Sim, namely, terminates
its execution in the protocol, this could happen in any step
of the execution of the protocol and as in hybrid model,
where Sim terminates its running, the protocol also
terminates and A does not learn any information.

In COTCT Step 2 and verification step, A has to proof
using zero-knowledge to Sim the correctness of its
commitments, if Sim does not accept the proofs, it
terminates its running, as in the hybrid model execution, the
protocol terminates and A does not learn any information.

RP is corrupted. As previous proof, the idea is learning the
input of RP such that it does not distinguish between
simulation and real executions of the protocol. Sim extracts
the input of RP from the commitment which is provided by

,A since it plays as trusted oracle, chooses the public key
PK such it knows the private key SK of CS encryption
scheme, learns the appropriate value of SP from TTP and
sends it to .A

More formally, let A be an adversary controlling ,RP
we construct a simulator, Sim, that generates the view of
both parties, A and ,SP in the hybrid model, given only
access to A and to the ideal model.

Also, in this simulation, we assume that Sim:

• Knows Δ

• Plays in the beginning of the protocol a trusted oracle,
chooses (SK, PK) of CS encryption scheme and sends
PK to .A

1 Simulation of Commit, Sim receives from
., , ()σA A AA ComMsg ids Com Sim extracts ,σA the

input of ,A since it knows SK and can decrypt the
commitment of ,A sends σA to the trusted party and
leanrs .σm m= A

2 Sim continues in the simulation of Commit, chooses
two messages Sim Sim

0 1, ,m m such that Sim
σm m=
A

 and
Sim
1 σm m− = + Δ

A
 and sends A two commitments of the

messages as in Commit step.

3 Simulation of COTCD Step 1, Sim receives
, , (, ,)u e yA A ACOTCDMsg1 ids from A and plays

the verifier in the zero-knowledge proof of ZKDLEQ(g,
u, γ, y, C/e) ∧ ZKCom(PK, , (,)).cidA AACom

 If Sim did not accept the proof, it terminates the
execution of the protocol and send ⊥ to the trusted
party. Otherwise, proceeds in the protocol.

• As previous simulation, if in any step, A sends ⊥ or
fail in verifying in the zero-knowledge proofs, Sim
sends ⊥ to the trusted party and halts the execution.

• If Sim learns the inputs of ,A it outputs whatever A
outputs and halts.

As previous, we show that the joint output distribution of
A and SP in the hybrid model protocol execution is
indistinguishable from the output of Sim and RP in the
ideal world simulation.

In any step, A could send ⊥ to Sim, namely, terminates
its execution in the protocol, this could happen in any step
of the execution of the protocol and as in hybrid model,
where Sim terminates its running, the protocol also
terminates and A does not learn any information.

In COTCT Step 1, A has to proof using
zero-knowledge to Sim the correctness of its commitment, if
Sim does not accept the proofs, it terminates its running, as
in the hybrid model execution, the protocol terminates and
A does not learn any information. �

 Secure computation of functionalities based on Hamming distance and its application to computing document 45

Figure 6 Run time of :Similarityk n
τ and binHDOT

Figure 7 COTCD ideal functionality

Input: RP and SP receives their inputs to the , COTCD RF P receives σ ∈ {0, 1} and SP receives m0, m1.

Additionally, they receive auxiliary inputs, RP receives Com(Δ) and SP receives Δ and checks that |m0 – m1| = Δ.

Commit: Upon receiving a , (,),i cis mPComMsg message from , i COTCDP F records the ((,),)i cid mP pair and broadcasts

., (,),i cid mPCommitted Here m can be either a message in the prescribe message space or a special symbol ⊥.

StartCOT: Upon receiving ,0 ,1, (, , , , , ,)S R R S Smsg sid cid cid cid cidΔ= P PStartCOTCD from , S COTCDP F verifies that it has

records ,0 ,0 ,1 ,1((,),), ((,),), ((,),), ((,),).R R R S S S S S S Scid m cid m cid m cidΔ ΔP P P P It, also, checks that |m0 – m1| = Δ and that, m ≠ ⊥. If this
fails, COTCDF ignores this message; Otherwise, COTCDF records msg and forward it to .SP

CompleteCOTCD: Upon receiving ,0 ,1, (, , , , , ,)S R R S Ssid cid cid cid cidΔP PCompleteCOTCD from , S COTCDP F verifies that it has a

record 〈StartCOTCD, ids〉, where ,0 ,1(, , , , , ,).S R R S Ssid cid cid cid cidΔ= P Pids COTCDF looks up records ,0 ,0((,),),S S Scid mP

,1 ,1((,),)S S Scid mP and ((,),),S cidΔ ΔP and checks:

 • mS,0 ≠ ⊥
 • mS,1 ≠ ⊥
 • |mS,0 – mS,1| = Δ, a verification step to the difference between the messages.

If anything fails, COTCDF ignores this message.

Otherwise COTCDF looks up the record (,),).R R Rcid mP If m ∉ {0, 1}, COTCDF sends a special message , , ,S R sidP PCOTCDFailed to

.RP Otherwise COTCDF sends ,, , (,)S bm bCompleteCOTCD ids to RP for b = m=.

46 A. Jarrous and B. Pinkas

Figure 8 Protocol COTCD, for committed OT with constant difference

Common reference string: A committed instance of the public key of t he CS encryption scheme PK = (n, g, γ, , φ; hk).

Auxiliary input: SP receives Δ and RP receives a commitment ComΔ which is indexed by an identifier cidΔ (in our application the
parties will invoke this protocol many times, and use the same Δ value and commitment in all these invocations).

Input: ’sSP input contains two messages (m0, m1), where |m0 – m1| = Δ, and m0, m1, 2 .0, n⎡ ⎤Δ∈ ⎣ ⎦ ’sRP input is σ ∈ {0, 1}.

Output: RP learns mσ while SP does not learn any information.

Commit: For player ,iP on commitment instance cid and message m: Player iP sets (,), (),i Pkcid m= =P idsids Com CSenc and broadcasts
〈ComMsg, ids, Com〉.

Protocol execution: Receiver RP executes a COTCD instance sid with sender .SP ’sRP bit σ is committed in ComR, ’sSP messages
m0, m1 are committed in ComS,0, ComS,1. Let cidR, cidS,0, cidS,1 be the identifiers for these commitments.

COTCD Step 1: RP sets ,0 ,1(, , , , , ,),S R R S Ssid cid cid cid cidΔ= P Pids retrieves (, ,)R u C v=Com and its decommitment 4 .0, nr ⎡ ⎤∈ ⎣ ⎦

Note that C = ασγr. RP picks 4 ,0, nx ⎡ ⎤∈ ⎣ ⎦ and computes

, ,x r σ ry g u g e y= = =α

RP sends 〈COTCDMsg1, ids, (u, e, y) 〉 to ,SP and runs the proof system ZKDLEQ(g, u, γ, y, C/e) ∧ (, , (,))R R RPK cidPZKCom Com
with ,SP where it operates as the prover.

COTCD Step 2: After receiving 〈COTCDMsg1, ids, (u, e, y) 〉 which was sent to SP from ,RP SP retrieves messages m0, m1
committed in 0 0 0 0(, ,)S u C v=Com and 1 1 1 1(, ,).S u C v=Com Note that i mii m rC σ γ= for some .imr SP creates two ‘COTCD-encryptions’
for i = 0; 1:

* andi i i i i is m i s r s r
i ie e y u u g−= =α

using random even values si ∈ [0, 2n] and 2 .0, n
ir ⎡ ⎤∈ ⎣ ⎦ If RP passed its proof in Step 1, sP sends message 〈COTCDMsg2, ids, (u0, e0, u1,

e1)〉 to ,RP and performs, with RP as the verifier, a proof that ZKCot(0, e0, u0, e, u, y, C0) ∧ ZKCot(1, e1, u1, e, u, y, C1) ∧

0 1,0 ,1(, (,)) (, (,)).S S S S S SP cid P cid∧ZKCom Com ZKCom Com

Verification step: In addition, the parties run the following step to verify that the difference between m0 and m1 is ±Δ. This is the main
part in which the protocol is different from the protocol in Jarecki and Shmatikov (2007).

RP computes two commitments, Com(m0 – m1) and Com(m1 – m0), by using the homomorphic properties of the CS scheme and
computing Com(m0)/Com(m1) and Com(m1)/Com(m0) (namely, RP computes (e0/e1, u0/u1) and (e1/e0, u1/u0)).

SP performs, with RP as the verifier, a proof that one of these two commitments is a commitment to Δ. Namely, SP proves that
ZKCot(1, e0/e1, u0/u1, e, u, y, CΔ) ∨ ZKCot(1, e1/e0, u1/u0, e, u, y, CΔ).

If SP passes its verification of the zero-knowledge proofs both parties continue to Step 3; Otherwise, RP rejects.

COTCD Step 3: RP decrypts the sCS ciphertext (uσ, eσ) and obtains mσ. If SP passed its proof in Step 2, then RP outputs mσ;
Otherwise RP rejects.

Comment: We have considered simplifying the steps of the protocol by removing the proof that the commitments to m0 and m1 are
properly formed (namely the proof in Step 2 that 0 1,0 ,1(, (,)) (, (,)).S S S S S SP cid P cid∧ZKCom Com ZKCom Com After all, we are not
interested in the sender committing to these values but rather in ensuring that the difference of these values is ±Δ. We cannot do that,
however, since removing these proofs might enable the sender to commit to two random values that have a difference of Δ but are
otherwise unknown to the sender.

