Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 27, 2016

Neighborly inscribed polytopes and delaunay triangulations

  • Bernd Gonska and Arnau Padrol EMAIL logo
From the journal Advances in Geometry

Abstract

We construct a large family of neighborly polytopes that can be realized with all the vertices on the boundary of any smooth strictly convex body. In particular, we show that for d ≥ 4 there are superexponentially many combinatorially distinct neighborly d-polytopes on n vertices that admit realizations inscribed in the sphere. These are the first examples of inscribable neighborly polytopes that are not cyclic polytopes, and provide the current best lower bound for the number of combinatorial types of inscribable polytopes (which coincides with the current best lower bound for the number of combinatorial types of polytopes). Via stereographic projections, this translates into a superexponential lower bound for the number of combinatorial types of (neighborly) Delaunay triangulations in ℝd for d ≥ 3.


Communicated by: M. Henk


Acknowledgements

We would like to thank Karim Adiprasito for sharing his insights with us and letting us add them to our paper; and Moritz Firsching for checking inscribability of neighborly 4-polytopes with few vertices.

References

[1] K. A. Adiprasito, A. Padrol, L. Theran, Universality theorems for inscribed polytopes and Delaunay triangulations. Discrete Comput. Geom. 54(2015), 412–431. MR337211710.1007/s00454-015-9714-xSearch in Google Scholar

[2] K. A. Adiprasito, G. M. Ziegler, Many projectively unique polytopes. Invent. Math. 199(2015), 581–652. MR3314513 Zbl 0641804210.1007/s00222-014-0519-ySearch in Google Scholar

[3] N. Alon, The number of polytopes, configurations and real matroids. Mathematika33(1986), 62–71. MR859498 (88c:05038) Zbl 0591.0501410.1112/S0025579300013875Search in Google Scholar

[4] A. Barvinok, I. Novik, A centrally symmetric version of the cyclic polytope. Discrete Comput. Geom. 39(2008), 76–99. MR2383752 (2009e:52025) Zbl 1184.5201010.1007/978-0-387-87363-3_6Search in Google Scholar

[5] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. M. Ziegler, Orientedmatroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 1993. MR1226888 (95e:52023) Zbl 0773.52001Search in Google Scholar

[6] K. Q. Brown, Voronoi diagrams from convex hulls. Inf. Process. Lett. 9(1979), 223–228. Zbl 0424.6803610.1016/0020-0190(79)90074-7Search in Google Scholar

[7] C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend.Circ.Mat. Palermo32(1911), 193–217. Zbl 42.0429.0110.1007/BF03014795Search in Google Scholar

[8] J. A. De Loera, J. Rambau, F. Santos, Triangulations, volume 25 of Algorithmsand Computationin Mathematics. Springer 2010. MR2743368 (2011j:52037) Zbl 1207.52002Search in Google Scholar

[9] H. Edelsbrunner, Geometry and topology for mesh generation, volume 7 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge Univ. Press 2006. MR2223897 (2006k:65355) Zbl 1088.65014Search in Google Scholar

[10] J. Erickson, Nice point sets can have nasty Delaunay triangulations. Discrete Comput. Geom. 30(2003), 109–132. MR1991589 (2004f:68164) Zbl 1038.6812910.1145/378583.378636Search in Google Scholar

[11] J. Erickson, Dense point sets have sparse Delaunay triangulations or “...but not too nasty”. Discrete Comput. Geom. 33(2005), 83–115. MR2105752 (2005i:68082) Zbl 1077.6810810.1007/s00454-004-1089-3Search in Google Scholar

[12] M. Firsching, Realizability and inscribability for some simplicial spheres and matroid polytopes. Preprint, 2015, 25 pp. arXiv:1508.02531v2 [math.MG]Search in Google Scholar

[13] B. Gonska, Inscribable polytopes via Delaunay triangulations. Ph.D. thesis, Freie Universität Berlin, 2013.10.46298/dmtcs.2389Search in Google Scholar

[14] B. Gonska, G. M. Ziegler, Inscribable stacked polytopes. Adv. Geom. 13(2013), 723–740. MR3181544 Zbl 1288.5200710.1515/advgeom-2013-0014Search in Google Scholar

[15] J. E. Goodman, R. Pollack, Upper bounds for configurations and polytopes in ℝd. Discrete Comput. Geom. 1(1986), 219–227. MR861891 (87k:52016) Zbl 0609.5200410.1007/BF02187696Search in Google Scholar

[16] B. Grünbaum, Convex polytopes. Springer 2003. MR1976856 (2004b:52001) Zbl 1024.5200110.1007/978-1-4613-0019-9Search in Google Scholar

[17] C. D. Hodgson, I. Rivin, W. D. Smith, A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere. Bull. Amer. Math. Soc. (N.S.) 27(1992), 246–251. MR1149872 (93a:52009) Zbl 0759.5201010.1090/S0273-0979-1992-00303-8Search in Google Scholar

[18] S. Ivanov, Can all convex polytopes be realized with vertices on surface of convex body? http://mathoverflow.net/users/4354/sergei ivanov, http://mathoverflow.net/q/107113 (version: 2012-09-13)Search in Google Scholar

[19] P. McMullen, The maximum numbers of faces of a convex polytope. Mathematika17(1970), 179–184. MR0283691 (44 #921) Zbl 0217.4670310.1112/S0025579300002850Search in Google Scholar

[20] A. Padrol, Many neighborly polytopes and oriented matroids. DiscreteComput. Geom. 50(2013), 865–902. MR3138140 Zbl 1283.5201310.1007/s00454-013-9544-7Search in Google Scholar

[21] A. Padrol, Neighborly and almost neighborly configurations, and their duals. Ph.D. Thesis, Universitat Politècnica de Catalunya, 2013.Search in Google Scholar

[22] A. Padrol, L. Theran, Delaunay Triangulations with Disconnected Realization Spaces. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14, 163–170, ACM, New York, 2014.10.1145/2582112.2582119Search in Google Scholar

[23] I. Rivin, A characterization of ideal polyhedra in hyperbolic 3-space. Ann. Of Math. (2) 143(1996), 51–70. MR1370757 (96i:52008) Zbl 0874.5200610.2307/2118652Search in Google Scholar

[24] F. Santos, On Delaunay oriented matroids for convex distance functions. Discrete Comput. Geom. 16(1996), 197–210. MR1407356 (97e:52019) Zbl 0879.5200810.1007/BF02716807Search in Google Scholar

[25] R. Schneider, Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 1993. MR1216521 (94d:52007) Zbl 0798.5200110.1017/CBO9780511526282Search in Google Scholar

[26] O. Schramm, How to cage an egg. Invent. Math. 107(1992), 543–560. MR1150601 (93c:52009) Zbl 0726.5200310.1007/978-1-4419-9675-6_5Search in Google Scholar

[27] R. Seidel, A method for proving lower bounds for certain geometric problems. In: Computational geometry, volume 2 of Mach. Intelligence Pattern Recogn., 319–334, North-Holland 1985. MR834393 (87d:68103) Zbl 0588.6805810.1016/B978-0-444-87806-9.50017-7Search in Google Scholar

[28] R. Seidel, On the number of faces in higher-dimensional Voronoi diagrams. In: Proceedings of the third annual symposium on Computational geometry, SCG ’87, 181–185, ACM, New York, 1987.10.1145/41958.41977Search in Google Scholar

[29] R. Seidel, Exact upper bounds for the number of faces in d-dimensional Voronoĭ diagrams. In: Applied geometry and discrete mathematics, volume 4 of DIMACSSer. Discrete Math. Theoret. Comput. Sci., 517–529, Amer. Math. Soc. 1991. MR1116374 (93b:52010) Zbl 0752.520210.1090/dimacs/004/40Search in Google Scholar

[30] I. Shemer, Neighborly polytopes. Israel J. Math. 43(1982), 291–314.MR693351 (84k:52008) Zbl 0598.0501010.1007/BF02761235Search in Google Scholar

[31] W. D. Smith, On the Enumeration of Inscribable Graphs. Manuscript, 1991, 7 pp. NEC Research Institute.Search in Google Scholar

[32] R. P. Stanley, Combinatorics and commutative algebra. Birkhäuser 1996. MR1453579 (98h:05001) Zbl 0838.13008Search in Google Scholar

[33] J. Steiner, Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander, mit Berücksichtigung der Arbeiten alter und neuer Geometer über Porismen, Projections-Methoden, Geometrie der Lage, Transversalen, Dualität, und Reciprocität, etc. Teil 1. Fincke, Berlin, 1832. Also in: Gesammelte Werke, Vol. 1, Reimer, Berlin 1881, pp. 229–458. Zbl 0015.36602 JFM 62.1043.03Search in Google Scholar

[34] E. Steinitz, Über isoperimetrische Probleme bei konvexen Polyedern. J. Reine Angew. Math. 159(1928), 133–143. MR1581158 JFM 54.0527.0410.1515/crll.1928.159.133Search in Google Scholar

[35] B. Sturmfels, Cyclic polytopes and d-order curves. Geom. Dedicata24(1987), 103–107. MR904552 (88h:52010) Zbl 0628.5200810.1007/BF00159750Search in Google Scholar

Received: 2014-4-24
Revised: 2015-2-20
Published Online: 2016-6-27
Published in Print: 2016-7-1

© 2016 by Walter de Gruyter Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2015-0045/html
Scroll to top button