Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 22, 2021

Automorphisms of a Clifford-like parallelism

  • Hans Havlicek , Stefano Pasotti and Silvia Pianta EMAIL logo
From the journal Advances in Geometry

Abstract

We focus on the description of the automorphism group Γ of a Clifford-like parallelism ∥ on a 3-dimensional projective double space (ℙ(HF), ∥, ∥r) over a quaternion skew field H (of any characteristic). We compare Γ with the automorphism group Γ of the left parallelism ∥, which is strictly related to Aut(H). We build up and discuss several examples showing that over certain quaternion skew fields it is possible to choose ∥ in such a way that Γ is either properly contained in Γ or coincides with Γ even though ∥ ≠ ∥.

MSC 2010: 51A15; 51J15

Funding statement: The second author was partially supported by GNSAGA of INdAM (Italy). The third author was partially supported by Università Cattolica del Sacro Cuore (Milano, Italy) in the framework of Call D.1 2018.

  1. Communicated by: R. Löwen

References

[1] A. Betten, The packings of PG(3, 3). Des. Codes Cryptogr. 79 (2016), 583–595. MR3489759 Zbl 1342.5100810.1007/s10623-015-0074-6Search in Google Scholar

[2] D. Betten, R. Löwen, Compactness of the automorphism group of a topological parallelism on real projective 3-space. Results Math. 72 (2017), 1021–1030. MR3684474 Zbl 1379.5100310.1007/s00025-017-0674-8Search in Google Scholar

[3] D. Betten, R. Riesinger, Clifford parallelism: old and new definitions, and their use. J. Geom. 103 (2012), 31–73. MR2944549 Zbl 1258.5100110.1007/s00022-012-0118-2Search in Google Scholar

[4] D. Betten, R. Riesinger, Collineation groups of topological parallelisms. Adv. Geom. 14 (2014), 175–189. MR3159101 Zbl 1291.5101110.1515/advgeom-2013-0032Search in Google Scholar

[5] A. Blunck, N. Knarr, B. Stroppel, M. J. Stroppel, Clifford parallelisms defined by octonions. Monatsh. Math. 187 (2018), 437–458. MR3858425 Zbl 1400.5100210.1007/s00605-017-1115-1Search in Google Scholar

[6] A. Blunck, S. Pasotti, S. Pianta, Generalized Clifford parallelisms. Innov. Incidence Geom. 11 (2010), 197–212. MR2795063 Zbl 1260.5100110.2140/iig.2010.11.197Search in Google Scholar

[7] A. Cogliati, Variations on a theme: Clifford’s parallelism in elliptic space. Arch. Hist. Exact Sci. 69 (2015), 363–390. MR3366062 Zbl 1331.5101710.1007/s00407-015-0154-zSearch in Google Scholar

[8] P. K. Draxl, Skew fields. Cambridge Univ. Press 1983. MR696937 Zbl 0498.1601510.1017/CBO9780511661907Search in Google Scholar

[9] B. Fein, M. Schacher, The ordinary quaternions over a Pythagorean field. Proc. Amer. Math. Soc. 60 (1976), 16–18 (1977). MR0417139 Zbl 0345.1602210.1090/S0002-9939-1976-0417139-3Search in Google Scholar

[10] H. Havlicek, A note on Clifford parallelisms in characteristic two. Publ. Math. Debrecen86 (2015), 119–134. MR3300581 Zbl 1349.5100210.5486/PMD.2015.7034Search in Google Scholar

[11] H. Havlicek, Clifford parallelisms and external planes to the Klein quadric. J. Geom. 107 (2016), 287–303. MR3519950 Zbl 1368.5100110.1007/s00022-015-0303-1Search in Google Scholar

[12] H. Havlicek, S. Pasotti, S. Pianta, Clifford-like parallelisms. J. Geom. 110 (2019), Art. 2, 18 pages. MR3878672 Zbl 0702730310.1007/s00022-018-0456-9Search in Google Scholar

[13] H. Havlicek, R. Riesinger, Pencilled regular parallelisms. Acta Math. Hungar. 153 (2017), 249–264. MR3713574 Zbl 1399.5100110.1007/s10474-017-0742-2Search in Google Scholar

[14] A. Herzer, Eine Klasse von Geometrien mit transitiver Translationsgruppe. In: Beiträge zur geometrischen Algebra (Proc. Sympos., Duisburg, 1976), 147–152. Birkhäuser, Basel 1977. MR0478002 Zbl 0376.5001210.1007/978-3-0348-5573-0_19Search in Google Scholar

[15] A. Herzer, Halbprojektive Translationsgeometrien. Mitt. Math. Sem. Giessen127 (1977), ii+136 pages. MR0482523 Zbl 0363.50019Search in Google Scholar

[16] A. Herzer, On characterisations of kinematic spaces by parallelisms. In: Geometry and differential geometry (Proc. Conf., Univ. Haifa, Haifa, 1979), volume 792 of Lecture Notes in Math., 61–67, Springer 1980. MR585855 Zbl 0431.5101110.1007/BFb0088663Search in Google Scholar

[17] N. Jacobson, Basic algebra. II. W. H. Freeman and Company, New York 1989. MR1009787 Zbl 0694.16001Search in Google Scholar

[18] N. L. Johnson, Combinatorics of spreads and parallelisms, volume 295 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL 2010. MR2664307 Zbl 1200.5100110.1201/EBK1439819463Search in Google Scholar

[19] H. Karzel, H.-J. Kroll, Eine inzidenzgeometrische Kennzeichnung projektiver kinematischer Räume. Arch. Math. (Basel)26 (1975), 107–112. MR0367796 Zbl 0301.5000310.1007/BF01229712Search in Google Scholar

[20] H. Karzel, H.-J. Kroll, Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt 1988. MR1015291 Zbl 0718.01003Search in Google Scholar

[21] H. Karzel, H.-J. Kroll, K. Sörensen, Invariante Gruppenpartitionen und Doppelräume. J. Reine Angew. Math. 262/263 (1973), 153–157. MR0328756 Zbl 0265.50003Search in Google Scholar

[22] H. Karzel, H.-J. Kroll, K. Sörensen, Projektive Doppelräume. Arch. Math. (Basel)25 (1974), 206–209. MR0344991 Zbl 0296.5000310.1007/BF01238665Search in Google Scholar

[23] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, volume 44 of American Mathematical Society Colloquium Publications. Amer. Math. Soc. 1998. MR1632779 Zbl 0955.1600110.1090/coll/044Search in Google Scholar

[24] T. Y. Lam, A first course in noncommutative rings. Springer 2001. MR1838439 Zbl 0980.1600110.1007/978-1-4419-8616-0Search in Google Scholar

[25] R. Löwen, Compactness of the automorphism group of a topological parallelism on real projective 3-space: the disconnected case. Bull. Belg. Math. Soc. Simon Stevin25 (2018), 629–640. MR3896276 Zbl 0703817310.36045/bbms/1546570914Search in Google Scholar

[26] R. Löwen, Parallelisms of PG(3,ℝ) admitting a 3-dimensional group. Beitr. Algebra Geom. 60 (2019), 333–337. MR3943866 Zbl 0705016110.1007/s13366-018-0418-2Search in Google Scholar

[27] R. Löwen, A characterization of Clifford parallelism by automorphisms. Innov. Incidence Geom. 17 (2019), 43–46. MR398654610.2140/iig.2019.17.43Search in Google Scholar

[28] H. Lüneburg, Translation planes. Springer 1980. MR572791 Zbl 0446.5100310.1007/978-3-642-67412-9Search in Google Scholar

[29] S. Pianta, On automorphisms for some fibered incidence groups. J. Geom. 30 (1987), 164–171. MR918825 Zbl 0631.5100910.1007/BF01227814Search in Google Scholar

[30] S. Pianta, E. Zizioli, Collineations of geometric structures derived from quaternion algebras. J. Geom. 37 (1990), 142–152. MR1041987 Zbl 0709.5101910.1007/BF01230367Search in Google Scholar

[31] J. Tits, R. M. Weiss, Moufang polygons. Springer 2002. MR1938841 Zbl 1010.2001710.1007/978-3-662-04689-0Search in Google Scholar

[32] S. Topalova, S. Zhelezova, Types of spreads and duality of the parallelisms of PG(3,5) with automorphisms of order 13. Des. Codes Cryptogr. 87 (2019), 495–507. MR3911218 Zbl 0702676210.1007/s10623-018-0558-2Search in Google Scholar

Received: 2018-12-06
Revised: 2019-02-07
Published Online: 2021-01-22
Published in Print: 2021-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2020-0027/html
Scroll to top button