Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access May 13, 2020

Broad spectral lines in AGNs and supermassive black hole mass measurements

  • Luka Č. Popović EMAIL logo
From the journal Open Astronomy

Abstract

The mass measurement of supermassive black holes (SMBHs) is a very complex task. Between several methods for SMBH mass measurements, some of them use the spectral lines, which indicate the motion of the emitting/absorbing material around an SMBH. Mostly, there is an assumption of virialization of line emitting gas in the region which is close to the central SMBH. In this paper we will give an overview of methods for the SMBH mass measurements using broad emission spectral lines observed in Type 1 AGNs. First we give the basic idea to use the parameters of broad lines to SMBH mass measurements. After that we give an overview of broad lines from X-ray (Fe kα) to the IR (Pashen and Brecket lines) which have been used for SMBH mass estimates. Additionally, we describe and discuss a new method for SMBH mass measurements using the polarization in the broad lines emitted from Type 1 AGNs.

References

Assef RJ, Denney KD, Kochanek CS, Peterson BM, Kozłowski S, Ageorges N, et al. 2011. Black hole mass estimates based on C IV are consistent with those based on the Balmer lines. ApJ. 742(2): id.93, 26pp.10.1088/0004-637X/742/2/93Search in Google Scholar

Afanasiev VL, Popović LČ. 2015. Polarization in Lines—A New Method for Measuring Black Hole Masses in Active Galaxies. ApJLett, 800(2): id.L35.10.1088/2041-8205/800/2/L35Search in Google Scholar

Afanasiev VL, Popović LČ, Shapovalova AI. 2019. Spectropolarimetry of Seyfert 1 galaxies with equatorial scattering: black hole masses and broad-line region characteristics. MNRAS. 482(4):4985-4999.10.1093/mnras/sty2995Search in Google Scholar

Afanasiev VL, Popović LČ, Shapovalova AI, Borisov NV, Ilić D. 2014. Variability in spectropolarimetric properties of Sy 1.5 galaxy Mrk 6. MNRAS. 440(1):519-529.10.1093/mnras/stu231Search in Google Scholar

Alexander T. 2017. Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole. Annu Rev Astron Astrophys. 55(1):17–57.10.1146/annurev-astro-091916-055306Search in Google Scholar

Bahk H, Woo J-H, Park D. 2019. Calibrating Mg II–based Black Hole Mass Estimators with H β Reverberation Measurements. ApJ. 875(1):50.10.3847/1538-4357/ab100dSearch in Google Scholar

Baldwin JA. 1977. Luminosity Indicators in the Spectra of Quasi-Stellar Objects. ApJ. 214:679-684.10.1086/155294Search in Google Scholar

Baron D, Ménard B. 2019. Black hole mass estimation for active galactic nuclei from a new angle. MNRAS. 487(3):3404-3418.10.1093/mnras/stz1546Search in Google Scholar

Bentz MC, Denney KD, Cackett EM, Dietrich M, Fogel JKJ, Ghosh H, et al. 2006. A Reverberation-based Mass for the Central Black Hole in NGC 4151. ApJ. 651(2):775-781.10.1086/507417Search in Google Scholar

Bentz MC, Denney KD, Grier CJ, Barth AJ, Peterson BM, Vestergaard M, et al. 2013. The low-luminosity end of the radius-luminosity relationship for Active Galactic Nuclei. ApJ. 2013;767(2):149.10.1088/0004-637X/767/2/149Search in Google Scholar

Bentz MC, Katz S. 2015. The AGN Black Hole Mass Database. PASP. 127(947):67-73.10.1086/679601Search in Google Scholar

Bentz MC, Manne-Nicholas E. 2018. Black Hole-Galaxy Scaling Relationships for Active Galactic Nuclei with Reverberation Masses. ApJ, 864(2): id.146, 19pp.10.3847/1538-4357/aad808Search in Google Scholar

Bentz MC, Peterson BM, Netze H, Pogge RW, Vestergaard M. 2009. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs. ApJ. 697:160-181.10.1088/0004-637X/697/1/160Search in Google Scholar

Bentz MC, Peterson BM, Pogge RW, Vestergaard M, Onken CA. 2006. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. ApJ. 644(1):133-142.10.1086/503537Search in Google Scholar

Bentz MC, Walsh JL, Barth AJ, Baliber N, Bennert VN, Canalizo G, et al. 2009. The lick AGN monitoring project: broad-line region radii and black hole masses from reverberation mapping of Hβ. ApJ. 705(1):199-217.10.1088/0004-637X/705/1/199Search in Google Scholar

Blandford Blandford RD, McKee CF. 1982. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. ApJ. 255:419-439.10.1086/159843Search in Google Scholar

Bochkarev NG, Gaskell CM. 2009. The accuracy of supermassive black hole masses determined by the single-epoch spectrum (Dibai) method. Astron Lett. 35(5):287-293.10.1134/S1063773709050016Search in Google Scholar

Cackett EM, Gültekin K, Bentz MC, Fausnaugh MM, Peterson BM, Troyer J, et al. 2015. Swift /UVOT grism monitoring of NGC 5548 in 2013: an attempt at Mg II reverberation mapping. ApJ. 810(2):86.10.1088/0004-637X/810/2/86Search in Google Scholar

Campana S, Stella L. 1995. Reverberation by a relativistic accretion disc. MNRAS. 272(3):585-598.10.1093/mnras/272.3.585Search in Google Scholar

Capriotti ER, Foltz CB, Peterson BM. 1982. The time variation of broad emission-line profiles of Seyfert 1 galaxies. ApJ. 261:35-41.10.1086/160315Search in Google Scholar

Clavel J, Reichert GA, Alloin D, Crenshaw DM, Kriss G, Krolik JH, et al. 1991. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I - an 8 month campaign of monitoring NGC 5548 with IUE. ApJ. 366:64-81.10.1086/169540Search in Google Scholar

Collier SJ, Horne K, Kaspi S, Netzer H, Peterson BM, Wanders I, et al. 1998. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469. ApJ. 500(1):162-172.10.1086/305720Search in Google Scholar

Czerny B, Olejak A, Raćowski M, Kozłowski S, Martinez Aldama ML, Zajacek M et al. 2019. Time Delay Measurement of Mg II Line in CTS C30.10 with SALT. ApJ. 880(1):46.10.3847/1538-4357/ab2913Search in Google Scholar

Davis BL, Graham AW, Cameron E. 2019. Black Hole Mass Scaling Relations for Spiral Galaxies. I. MBH-M*, sph. ApJ. 873: id.85, 26pp.10.3847/1538-4357/aaf3b8Search in Google Scholar

Denney KD. 2012. Are outflows biasing single-epoch C IV black holes mass estimates? ApJ. 759(1):44.10.1088/0004-637X/759/1/44Search in Google Scholar

Denney KD, Pogge RW, Assef RJ, Kochanek CS, Peterson BM, Vestergaard M. 2013. C IV line-width anomalies: the perils of low signal-to-noise spectra. ApJ. 775(1):60.10.1088/0004-637X/775/1/60Search in Google Scholar

Denney KD, Watson LC, Peterson BM, Pogge RW, Atlee DW, Bentz MC, et al. 2009. A revised broad-line region radius and black hole mass for the narrow-line Seyfert 1 NGC 4051. ApJ. 702(2):1353-1366.10.1088/0004-637X/702/2/1353Search in Google Scholar

De Rosa G, Peterson BM, Ely J, Clavel J, Crenshaw DM Horne K, et al. 2015. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope. ApJ. 806: id.128, 15pp.10.1088/0004-637X/806/1/128Search in Google Scholar

Dibai EA. 1977. Mass of the central bodies of active galaxy nuclei. SvAL. 3:1–3.Search in Google Scholar

Dibai EA. 1978. The envelope parameters and mass of active nuclei of galaxies SvA. 22:261-266.Search in Google Scholar

Dietrich M, Kollatschny W, Peterson BM, Bechtold J, Bertram R, Bochkarev NG, et al. 1993. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. IV - Intensity variations of the optical emission lines of NGC 5548. ApJ. 408:416-427.10.1086/172599Search in Google Scholar

Doroshenko VT, Sergeev SG, Pronik VI, Chuvaev KK. 1999. Hβ and continuum variability in the Seyfert galaxy Akn 120 from Crimean observations during 1974-1990 Astron. Lett. 25:569-581.Search in Google Scholar

Dovčiak M, Bianchi S, Guainazzi M, Karas V, Matt G. 2004. Relativistic spectral features from X-ray-illuminated spots and the measure of the black hole mass in active galactic nuclei. MNRAS. 350(2):745-755.10.1111/j.1365-2966.2004.07683.xSearch in Google Scholar

Du P, Zhang Z-X, Wang K, Huang Y-K, Zhang Y, Lu K-X, et al. 2018. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened H β Lags. ApJ. 856(1):6.10.3847/1538-4357/aaae6bSearch in Google Scholar

Du P, Hu C, Lu K-X, Huang Y-K, Cheng C, Qiu J, et al. 2015. Supermassive black holes with high accretion rates in Active Galactic Nuclei. IV. Hβ time lags and implications for Super-Eddington accretion. ApJ. 806(1):22.10.1088/0004-637X/806/1/22Search in Google Scholar

Du P, Lu K-X, Zhang Z-X, Huang Y-K, Wang K, Hu C, et al. 2016. Supermassive black holes with high accretion rates in Active Galactic Nuclei. V. A new size-luminosity scaling relations for the broad-line region. ApJ. 825(2):126.10.3847/0004-637X/825/2/126Search in Google Scholar

Fabian AC, Nandra K, Reynolds CS, Brandt WN, Otani C, Tanaka Y, et al. 1995. On broad iron Kalpha lines in Seyfert 1 galaxies. MNRAS. 277:L11-L15.Search in Google Scholar

Ferrarese L, Merritt DA. 2000. Fundamental Relation between Super-massive Black Holes and Their Host Galaxies. ApJ. 539(1):L9-L12.10.1086/312838Search in Google Scholar

Fine S, Croom SM, Bland-Hawthorn J, Pimbblet KA, Ross NP, Schneider DP, et al. 2010. The C iv linewidth distribution for quasars and its implications for broad-line region dynamics and virial mass estimation. MNRAS. 409(2):591-610.10.1111/j.1365-2966.2010.17107.xSearch in Google Scholar

Gaskell CM, Sparke LS. 1986. Line variations in quasars and Seyfert galaxies. ApJ. 305:175186.10.1086/164238Search in Google Scholar

Ge X, Zhao B-X, Bian W-H, Frederick GR. 2019. The Blueshift of the C IV Broad Emission Line in QSOs. AJ. 157: id.148, 14pp.10.3847/1538-3881/ab0956Search in Google Scholar

Goad MR, Korista KT, De Rosa G, Kriss GA, Edelson R, Barth AJ, et al. 2016. Space telescope and optical reverberation mapping project. Anomalous behavior of the broad ultraviolet emission lines in NGC 5548. ApJ. 824(1):11.Search in Google Scholar

Graham AW, Onken CA, Athanassoula E, Combes F. 2011. An expanded Mbh-σ diagram, and a new calibration of active galactic nuclei masses. MNRAS. 412(4):2211-2228.10.1111/j.1365-2966.2010.18045.xSearch in Google Scholar

Gravity Collaboration: Sturm E, Dexter J, Pfuhl O, et al. 2018. Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale. Nature. 563(7733):657-660.10.1038/s41586-018-0731-9Search in Google Scholar

Grier CJ, Martini P, Watson LC, Peterson BM, Bentz MC, Dasyra KM, et al. 2013. Stellar velocity dispersion measurements in high-luminosity quasar hosts and implications for the AGN black hole mass scale. ApJ. 773(2):90.10.1088/0004-637X/773/2/90Search in Google Scholar

Grier CJ, Pancoast A, Barth AJ, Fausnaugh MM, Brewer BJ, Treu T, et al. 2017. The Structure of the Broad-line Region in Active Galactic Nuclei. II. Dynamical Modeling of Data From the AGN10 Reverberation Mapping Campaign. ApJ. 849(2):146.10.3847/1538-4357/aa901bSearch in Google Scholar

Gültekin K, Richstone DO, Gebhardt K, Lauer TR, Tremaine S, Aller MC, et al. 2009. The M -σ and M - L relations in Galactic bulges, and determinations of their intrinsic scatter. ApJ. 698(1):198–221.10.1088/0004-637X/698/1/198Search in Google Scholar

Huang Y-K, Hu C, Zhao Y, Zhang Z-X, Lu K-X, Wang K, et al. 2019. Reverberation Mapping of the Narrow-line Seyfert 1 Galaxy I Zwicky 1: black Hole Mass. ApJ. 876(2):102.10.3847/1538-4357/ab16efSearch in Google Scholar

Hoormann JK, Martini P, Davis TM, King A, Lidman C, Mudd D, et al. 2019. C IV black hole mass measurements with the Australian Dark Energy Survey (OzDES). MNRAS. 487:3650-3663.10.1093/mnras/stz1539Search in Google Scholar

Jiang L, Shen Y, McGreer ID, Fan X, Morganson E, Windhorst RA. 2016. Reverberation mapping with intermediate-band photometry: detection of broad-line Hα time lags for quasars at 0.2 < z < 0.4. ApJ. 818(2):137.10.3847/0004-637X/818/2/137Search in Google Scholar

Jiang J, Walton DJ, Fabian AC, Parker ML. 2019. A relativistic disc reflection model for 1H0419-577: Multi-epoch spectral analysis with XMM-Newton and NuSTAR. MNRAS. 483(3):2958-2967.10.1093/mnras/sty3228Search in Google Scholar

Jonić S, Kovačević-Dojčinović J, Ilić D, Popović LČ. 2016. Virilization of the Broad Line Region in Active Galactic Nuclei—connection between shifts and widths of broad emission lines. Ap&Sp. Sci. 361: id.101, 24pp.10.1007/s10509-016-2680-9Search in Google Scholar

Jovanović P. 2012. The broad Fe Kα line and supermassive black holes. New Am Rev. 56(2-3):37–48.10.1016/j.newar.2011.11.002Search in Google Scholar

Kaspi S, Maoz D, Netzer H, Peterson BM, Vestergaard M, Jannuzi BT. 2005. The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei. ApJ. 629(1):61-71.10.1086/431275Search in Google Scholar

Kaspi S, Smith PS, Netzer H, Maoz D, Jannuzi BT, Giveon U. 2000. Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei. ApJ. 533(2):631-649.10.1086/308704Search in Google Scholar

Kilerci EE, Vestergaard M, Peterson BM, Denney KD, Bentz, MC. 2015. On the Scatter in the Radius-Luminosity Relationship for Active Galactic Nuclei. ApJ. 801(1): id.8, 16pp.10.1088/0004-637X/801/1/8Search in Google Scholar

Kim D, Im M, Kim M. 2010. New Estimators of black hole mass in active galactic nuclei with hydrogen Paschen lines. ApJ. 724(1):386-399.10.1088/0004-637X/724/1/386Search in Google Scholar

Kim D, Im M, Kim JH, Jun HD, Woo J-H, Lee HM, et al. 2015. The AKARI 2.5-5.0 µm spectral atlas of type-1 active galactic nuclei: black hole mass estimator, line ratio, and hot dust temperature. ApJS. 216(1):17.10.1088/0067-0049/216/1/17Search in Google Scholar

Kong, M.-Z., Wu, X.-B., Wang, R., Han, J.-L. 2006. Estimating Black Hole Masses of AGNs using Ultraviolet Emission Line Properties. ChJAA. 6(4):396-410.10.1088/1009-9271/6/4/02Search in Google Scholar

Koratkar AP, Gaskell CM. 1991. Radius-luminosity and mass-luminosity relationships for active galactic nuclei. ApJ. 370:L61-L64.10.1086/185977Search in Google Scholar

Kormendy J, Ho LC. 2013. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu Rev Astron Astrophys. 51(1):511–653.10.1146/annurev-astro-082708-101811Search in Google Scholar

Kovačević-Dojčinović J, Marčeta-Mandić S, Popović LČ. 2017. Black Hole Mass Estimation in the Type 1 AGN: H beta vs. Mg II lines and the role of Balmer continuum. FrASS. 4: id.7.10.3389/fspas.2017.00007Search in Google Scholar

Landt H, Bentz MC, Peterson BM, Elvis M, Ward MJ, Korista KT, et al. 2011. The near-infrared radius-luminosity relationship for active galactic nuclei. MNRAS. 413(1):L106-L109.10.1111/j.1745-3933.2011.01047.xSearch in Google Scholar

Landt H, Ward MJ, Peterson BM, Bentz MC, Elvis M, Korista KT, et al. 2013. A near-infrared relationship for estimating black hole masses in active galactic nuclei. MNRAS. 432(1):113–126.10.1093/mnras/stt421Search in Google Scholar

León-Tavares J, Chavushyan V, Patiño-Álvarez V, Valtaoja E, Arshakian TG, Popović LČ, et al. 2013. Flare-like variability of the Mg II λ2800 emission line in the γ-Ray Blazar 3C 454.3. ApJ. 763(2):L36.10.1088/2041-8205/763/2/L36Search in Google Scholar

Lira P, Kaspi S, Netzer H, Botti I, Morrell N, Mejía-Restrepo J, et al. 2018. Reverberation Mapping of Luminous Quasars at High z. ApJ. 865(1):56.10.3847/1538-4357/aada45Search in Google Scholar

Liu HT, Feng HC, Bai JM. 2017. A new method to measure the virial factors in the reverberation mapping of active galactic nuclei. MNRAS. 466(3):3323-3330.10.1093/mnras/stw3261Search in Google Scholar

Marziani P, del Olmo A, Martínez-Carballo MA, Martínez-Aldama ML, Stirpe GM, Negrete CA, et al. 2019. Black hole mass estimates in quasars. A comparative analysis of high- and low-ionization lines. A&A. 627: id.A88, 20pp.10.1051/0004-6361/201935265Search in Google Scholar

Marziani P, Sulentic JW, Plauchu-Frayn I, del Olmo A. 2013. Is MgIIλ2800 a reliable virial broadening estimator for quasars? A&A. 555: id.A89, 16pp.10.1051/0004-6361/201321374Search in Google Scholar

Matt G, Perola GC. 1992. The iron K-alpha response in an X-ray illuminated relativistic disc and a black hole mass estimate. MNRAS. 259(3):433-436.10.1093/mnras/259.3.433Search in Google Scholar

Mediavilla E, Jménez-Vicente J, Fian C, Muñoz JA, Falco E, Motta V, et al. 2018. Systematic Redshift of the Fe III UV Lines in Quasars: Measuring Supermassive Black Hole Masses under the Gravitational Redshift Hypothesis. ApJ. 862: id.104, 10pp.10.3847/1538-4357/aacbd3Search in Google Scholar

Mediavilla E, Jimnéz-Vicente J, Me’ja-Restrepo J, Motta V, Falco E, Muñoz JA, et al. 2019. Measuring Supermassive Black Hole Masses: Correlation between the Redshifts of the Fe iii UV Lines and the Widths of Broad Emission Lines. ApJ. 880(2):96.10.3847/1538-4357/ab2910Search in Google Scholar

Mejía-Restrepo JE, Trakhtenbrot B, Lira P, Netzer H. 2018. Can we improve C iv-based single-epoch black hole mass estimations? MNRAS. 478(2):1929-1941.10.1093/mnras/sty1086Search in Google Scholar

Mejía-Restrepo JE, Trakhtenbrot B, Lira P, Netzer H, Capellupo DM. 2016. Active galactic nuclei at z ~ 1.5 – II. Black hole mass estimation by means of broad emission lines. MNRAS. 460(1):187-211.10.1093/mnras/stw568Search in Google Scholar

Milošević M, Pursiainen MA, Jovanović P, Popović, LČ. 2018. The shape of Fe Kα line emitted from relativistic accretion disc around AGN black holes. International JMPys. A, 33(34): id.1845016.10.1142/S0217751X18450161Search in Google Scholar

Naab TO, Jeremiah P. 2017. Theoretical Challenges in Galaxy Formation. Annu Rev Astron Astrophys. 55(1):59-109.10.1146/annurev-astro-081913-040019Search in Google Scholar

Nandra K, George IM, Mushotzky RF, Turner TJ, Yaqoob T. 1997. ASCA Observations of Seyfert 1 Galaxies. II. Relativistic Iron Kα Emission. ApJ. 477(2):602-622.10.1086/303721Search in Google Scholar

O’Brien PT, Dietrich M, Leighly K, Alloin D, Clavel J, Crenshaw DM, et al. 1998. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIII. Ultraviolet Observations of the Broad-Line Radio Galaxy 3C 390.3. ApJ. 509(1):163-176.10.1086/306464Search in Google Scholar

Onken CA, Ferrarese L, Merritt D, Peterson BM, Pogge RW, Vestergaard M, et al. 2004. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass–Velocity Dispersion Relationship for Active Galactic Nuclei. ApJ. 615(2):645-651.10.1086/424655Search in Google Scholar

Onken CA, Kollmeier JA. 2008. An Improved Method for Using Mg ii to Estimate Black Hole Masses in Active Galactic Nuclei. ApJ. 689(1):L13-L16.10.1086/595746Search in Google Scholar

Onori F, Ricci F, La Franca F, Bianchi S, Bongiorno A, Brusa M, et al. 2017. Detection of faint broad emission lines in type 2 AGN – II. On the measurement of the black hole mass of type 2 AGN and the unified model. MNRAS. 468(1):L97-L102.10.1093/mnrasl/slx032Search in Google Scholar

Park D, Barth AJ, Woo J-H, Malkan MA, Treu T, Bennert VN, et al. 2017. Extending the Calibration of C iv-based Single-epoch Black Hole Mass Estimators for Active Galactic Nuclei. ApJ. 839(2):93.10.3847/1538-4357/aa6a53Search in Google Scholar

Park D, Kelly BC, Woo J-H, Treu T. 2012. Recalibration of the virial factor and MBH -σ* relation for local Active Galaxies. ApJS. 203(1):6.10.1088/0067-0049/203/1/6Search in Google Scholar

Peterson BM. 2014. Measuring the Masses of Supermassive Black Holes. SSRv. 183(1-4):253–275.10.1007/s11214-013-9987-4Search in Google Scholar

Peterson BM, Alloin D, Axon D, Balonek TJ, Bertram R, Boroson TA, et al. 1992. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. III -Further observations of NGC 5548 at optical wavelengths. ApJ. 392:470-484.10.1086/171447Search in Google Scholar

Peterson BM, Balonek TJ, Barker ES, Bechtold J, Bertram R, Bochkarev NG, et al. 1991. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. II - an intensive study of NGC 5548 at optical wavelengths. ApJ. 368:119-137.Search in Google Scholar

Piotrovich MY, Gnedin YuN, Silant’ev NA, Natsvlishvili TM, Buliga SD. 2015. A polarimetric method for measuring black hole masses in Active Galactic Nuclei. MNRAS. 454(1):1157–1160.10.1093/mnras/stv2047Search in Google Scholar

Popović LČ, Kovačević-Dojčinović J, Marčeta-Mandić S. 2019. The structure of the Mg II broad line emitting region in Type 1 AGNs. MNRAS. 484(3):3180-3197.10.1093/mnras/stz157Search in Google Scholar

Popović LČ, Shapovalova AI, Ilić D, Burenkov AN, Chavushyan VH, Kollatschny W, et al. 2014. Spectral optical monitoring of the double-peaked emission line AGN Arp 102B. II. Variability of the broad line properties A&A. 572:id.A66.10.1051/0004-6361/201423555Search in Google Scholar

Popović LČ, Vince I, Atanacković-Vukmanović O, Kubičela A. 1995. Contribution of gravitational redshift to spectral line profiles of Seyfert galaxies and quasars. A&A. 293:309-314.Search in Google Scholar

Reichert GA, Rodriguez-Pascual PM, Alloin D, Clavel J, Crenshaw DM, Kriss GA, et al. 1994. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 5: variability of the ultraviolet continuum and emission lines of NGC 3783. ApJ. 425:582-608.10.1007/978-94-010-9537-2_117Search in Google Scholar

Richards GT, Vanden Berk DE, Reichard TA, Hall PB, Schneider DP, SubbaRao M, et al. 2002. Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? AJ. 124(1):1-17.10.1086/341167Search in Google Scholar

Ricci F, La Franca F, Onori F, Bianchi S. 2017. Novel calibrations of virial black hole mass estimators in active galaxies based on X-ray luminosity and optical/near-infrared emission lines. A&A. 598:A51.10.1051/0004-6361/201629380Search in Google Scholar

Rodríguez-Pascual PM, Alloin D, Clavel J, Crenshaw DM, Horne K, Kriss GA, et al. 1997. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. IX. Ultraviolet Observations of Fairall 9. ApJS. 110(1):9–20.10.1086/312996Search in Google Scholar

Runnoe JC, Brotherton MS, Shang Z, DiPompeo MA. 2013. Rehabilitating C IV-based black hole mass estimates in quasars. MNRAS. 434(1):848–861.10.1093/mnras/stt1077Search in Google Scholar

Savić D, Goosmann R, Popović LČ, Marin F, Afanasiev VL. 2018. AGN black hole mass estimates using polarization in broad emission lines. A&A. 614: id.A120, 16pp.10.1051/0004-6361/201732220Search in Google Scholar

Shankar F, Bernardi M, Richardson K, Marsden C, Sheth RK, Allevato V, et al. 2019. Black hole scaling relations of active and quiescent galaxies: addressing selection effects and constraining virial factors. MNRAS. 485(1):1278–1292.10.1093/mnras/stz376Search in Google Scholar

Shapovalova AI, Burenkov AN, Carrasco L, Chavushyan VH, Doroshenko VT, Dumont AM, et al. 2001. Intermediate resolution Hβ spectroscopy and photometric monitoring of 3C 390.3. I. Further evidence of a nuclear accretion disk. A&A, 376, 775-792.10.1051/0004-6361:20011011Search in Google Scholar

Shapovalova A, Burenkov A, Spiridonova O, Vlasyuk V, Mikhailov V, Carrasco L, et al. 2000. Optical Monitoring of Seyfert Galaxies and Quasar Nuclei in 1998. Franco J, Terlevich L, Omar López-Cruz O, Aretxaga I. Editors. Proceedings of Cosmic Evolution and Galaxy Formation: Structure, Interactions, and Feedback, The 3rd Guillermo Haro Astrophysics Conference. ASPC, 215:219.Search in Google Scholar

Shapovalova AI, Popović LČ, Afanasiev VL, Ilić D, Kovačević A, Burenkov AN, et al. 2019. Long-term optical spectral monitoring of a changing-look active galactic nucleus NGC 3516 – I. Continuum and broad-line flux variability. MNRAS. 485(4):4790-4803.10.1093/mnras/stz692Search in Google Scholar

Shapovalova AI, Popović LČ, Burenkov AN, Chavushyan VH, Ilić D, Kollatschny W, et al. 2010. Spectral optical monitoring of 3C 390.3 in 1995-2007. I. Light curves and flux variation in the continuum and broad lines. A&A. 517: id.A42, 27pp.10.1051/0004-6361/201014118Search in Google Scholar

Shapovalova AI, Popović LČ, Chavushyan VH, Burenkov AN, Ilić D, Kollatschny W, et al. 2016. First long-term optical spectra monitoring of a binary black hole candidate E1821+643. I. Variability of spctral lines and continuum. ApJS. 222(2):25.10.3847/0067-0049/222/2/25Search in Google Scholar

Shapovalova A. I., Popović LČ, Chavushyan, VH, Liu X, Annis J, Avila S, et al. 2017. Long-term optical spectral monitoring of NGC 7469. MNRAS. 466(4):4759-4775.10.1093/mnras/stx025Search in Google Scholar

Shapovalova, A. I., Popović, L. Č., Collin, S., Burenkov AN, Chavushyan VH, Bochkarev NG, et al. 2008. Long-term variability of the optical spectra of NGC 4151. I. Light curves and flux correlations. A&A, 486(1), 99-111.10.1051/0004-6361:20079111Search in Google Scholar

Shen Y, Horne K, Grier CJ, Peterson BM, Denney KD, Trump JR, et al. 2016. The Sloan Digital Sky Survey reverberation mapping project: first broad-line H βand Mg II lags at z ≳ 0.3 from six-month spectroscopy. ApJ. 818(1):30S.10.3847/0004-637X/818/1/30Search in Google Scholar

Smith JE, Robinson A, Young S, Axon DJ, Corbett EA. 2005. Equatorial scattering and the structure of the broad-line region in Seyfert nuclei: evidence for a rotating disc. MNRAS. 359(3):846–864.10.1111/j.1365-2966.2005.08895.xSearch in Google Scholar

Songsheng Y-Y, Wang J-M. 2018. Measuring black hole mass of type I active galactic nuclei by spectropolarimetry. MNRAS. 473(1):L1-L5.10.1093/mnrasl/slx154Search in Google Scholar

Stirpe GM, Winge C, Altieri B, Alloin D, Aguero EL, Anupama GC, et al. 1994. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 6: variability of NGC 3783 from ground-based data. ApJ. 425:609-621.10.1086/174008Search in Google Scholar

Sulentic JW, Marziani P, Dultzin-Hacyan D. 2000. Phenomenology of Broad Emission Lines in Active Galactic Nuclei. Annu Rev Astron Astrophys. 38(1):521–571.10.1146/annurev.astro.38.1.521Search in Google Scholar

Sun, M., Xue, Y., Richards, G. T., Trump, J. R., Shen, Y., Brandt, W. N., et al. 2018. The Sloan Digital Sky Survey Reverberation Mapping Project: The C IV Blueshift, Its Variability, and Its Dependence Upon Quasar Properties. ApJ, 854: id.128, 15 pp.10.3847/1538-4357/aaa890Search in Google Scholar

Tanaka Y, Nandra K, Fabian AC, Inoue H, Otani C, Dotani T, et al. 1995. Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG–6–30–15. Nature. 375(6533):659-661.10.1038/375659a0Search in Google Scholar

Tao J, Qian B, Fan J. 2004. Optical Monitoring of Markarian 335 from 1994 to 2001 and Its Historical Light Curve. PASP. 116(821):634–639.10.1086/422178Search in Google Scholar

Taylor C, Reynolds CS. 2018. ApJ. X-Ray Reverberation from Black Hole Accretion Disks with Realistic Geometric Thickness. 868(2): id.109, 17pp.10.3847/1538-4357/aae9f2Search in Google Scholar

The Event Horizon Telescope Collaboration. 2019. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. ApJLett. 875:L1, 17pp.Search in Google Scholar

Trakhtenbrot B, Netzer H. 2012. Black hole growth to z = 2 - I. Improved virial methods for measuring MBH and L/LEdd. MNRAS. 427(4):3081–3102.10.1111/j.1365-2966.2012.22056.xSearch in Google Scholar

Tremaine S, Gebhardt K, Bender R, Bower G, Dressler A, Faber SM, et al. 2002. The Slope of the Black Hole Mass versus Velocity Dispersion Correlation. ApJ. 574(2):740–753.10.1086/341002Search in Google Scholar

Trevese D, Perna M, Vagnetti F, Saturni FG, Dadina M. 2014. C IV and C III reverberation mapping of the luminous Quasar PG 1247+267. ApJ. 795(2):164.10.1088/0004-637X/795/2/164Search in Google Scholar

Ulrich M-H, Courvoisier TJ-L, Wamsteker W. 1993. The time variability of the ultraviolet continuum and Lyman-alpha in 3C 273. ApJ. 411:125-132.10.1086/172812Search in Google Scholar

Vestergaard M, Peterson BM. 2006. Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships. ApJ. 641(2):689–709.10.1086/500572Search in Google Scholar

Wandel A, Peterson BM, Malkan MA. 1999. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques. ApJ. 526(2):579–591.10.1086/308017Search in Google Scholar

Wandel A, Yahil A. 1985. Universal mass-luminosity relation for quasars and active galactic nuclei? ApJ. 295: L1-L4.10.1086/184525Search in Google Scholar

Wang J-G, Dong X-B, Wang T-G, Ho LC, Yuan W, Wang H, et al. 2009. Estimating black hole masses in Active Galactic Nuclei using the Mg IIλ 2800 emission line. ApJ. 707(2):1334–1346.10.1088/0004-637X/707/2/1334Search in Google Scholar

Woo J-H, Le HAN, Karouzos M, Park D, Park D, Malkan MA, et al. 2018. Calibration and Limitations of the Mg II Line-based Black Hole Masses. ApJ. 859(2):138.10.3847/1538-4357/aabf3eSearch in Google Scholar

Yang Q, Shen Y, Chen Y-C, Liu X, Annis J, Avila S., et al. 2019. Spectral variability of a sample of extreme variability quasars and implications for the Mg II broad-line region 493(4):5773–5787.10.1093/mnras/staa645Search in Google Scholar

Zhang Z-X, Du P, Smith PS, Zhao Y, Hu C, Xiao M, et al. 2019. Kinematics of the Broad-line Region of 3C 273 from a 10 yr Reverberation Mapping Campaign. ApJ. 876(1):49.10.3847/1538-4357/ab1099Search in Google Scholar

Zoghbi A, Fabian AC, Reynolds CS, Cackett EM. 2012. Relativistic iron K X-ray reverberation in NGC 4151. MNRAS. 422(1):129–134.10.1111/j.1365-2966.2012.20587.xSearch in Google Scholar

Received: 2019-08-10
Accepted: 2020-01-20
Published Online: 2020-05-13

© 2020 Luka Č. Popović, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/astro-2020-0003/html
Scroll to top button