Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2005

Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress

  • Andreas Barthel and Lars-Oliver Klotz
From the journal Biological Chemistry

Abstract

Oxidative stress is linked to the pathogenesis and pathobiochemistry of various diseases, including cancer, diabetes and cardiovascular disorders. The non-specific damaging effect of reactive oxygen species (ROS) generated during oxidative stress is involved in the development of diseases, as well as the activation of specific signaling cascades in cells exposed to the higher oxidant load. A cellular signaling cascade that is activated by several types of reactive oxygen species is the phosphoinositide 3′-kinase (PI 3-kinase)/protein kinase B (PKB) pathway, which regulates cellular survival and fuel metabolism, thus establishing a link between oxidative stress and signaling in neoplastic, metabolic or degenerative diseases. Several links of PI 3-kinase/PKB signaling to ROS are discussed in this review, with particular focus on the molecular mechanisms involved in the regulation of PI 3-kinase signaling by oxidative stress and important players such as (i) the glutathione and glutaredoxin system, (ii) the thioredoxin system and (iii) Ser/Thr- and Tyr phosphatases.

:

Corresponding author

References

Abdelmohsen, K., Gerber, P.A., von Montfort, C., Sies, H., and Klotz, L.O. (2003). Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J. Biol. Chem.278, 38360–38367.10.1074/jbc.M306785200Search in Google Scholar

Abdelmohsen, K., Patak, P., von Montfort, C., Melchheier, I., Sies, H., and Klotz, L.O. (2004). Signaling effects of menadione: from tyrosine phosphatase inactivation to connexin phosphorylation. Methods Enzymol.378, 258–272.10.1016/S0076-6879(04)78020-9Search in Google Scholar

Adachi, T., Pimentel, D.R., Heibeck, T., Hou, X., Lee, Y.J., Jiang, B., Ido, Y., and Cohen, R.A. (2004). S-Glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J. Biol. Chem.279, 29857–29862.10.1074/jbc.M313320200Search in Google Scholar

Alessi, D.R., Caudwell, F.B., Andjelkovic, M., Hemmings, B.A., and Cohen, P. (1996). Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett.399, 333–338.10.1016/S0014-5793(96)01370-1Search in Google Scholar

Alessi, D.R. and Cohen, P. (1998). Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev.8, 55–62.10.1016/S0959-437X(98)80062-2Search in Google Scholar

Andersen, J.K. (2004). Oxidative stress in neurodegeneration: cause or consequence?Nat. Med.10 (Suppl.), S18–S25.Search in Google Scholar

Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X.F., Han, J.W., and Hemmings, B.A. (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc. Natl. Acad. Sci. USA93, 5699–5704.10.1073/pnas.93.12.5699Search in Google Scholar

Antoniades, C., Tousoulis, D., Tentolouris, C., Toutouzas, P., and Stefanadis, C. (2003). Oxidative stress, antioxidant vitamins, and atherosclerosis. From basic research to clinical practice. Herz28, 628–638.10.1007/s00059-003-2417-8Search in Google Scholar

Arner, E.S. and Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem.267, 6102–6109.10.1046/j.1432-1327.2000.01701.xSearch in Google Scholar

Barford, D. (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem. Sci.21, 407–412.10.1016/S0968-0004(96)10060-8Search in Google Scholar

Barrett, W.C., DeGnore, J.P., Konig, S., Fales, H.M., Keng, Y.F., Zhang, Z.Y., Yim, M.B., and Chock, P.B. (1999). Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry38, 6699–6705.10.1021/bi990240vSearch in Google Scholar PubMed

Barthel, A. and Schmoll, D. (2003). Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab285, E685–E692.10.1152/ajpendo.00253.2003Search in Google Scholar PubMed

Behrend, L., Henderson, G., and Zwacka, R.M. (2003). Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans.31, 1441–1444.10.1042/bst0311441Search in Google Scholar PubMed

Birnbaum, M.J. (2001). Turning down insulin signaling. J. Clin. Invest.108, 655–659.10.1172/JCI200113714Search in Google Scholar

Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature425, 980–984.Search in Google Scholar

Bogumil, R., Namgaladze, D., Schaarschmidt, D., Schmachtel, T., Hellstern, S., Mutzel, R., and Ullrich, V. (2000). Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxide. Evidence for a dithiol-disulfide equilibrium and implications for redox regulation. Eur. J. Biochem.267, 1407–1415.10.1046/j.1432-1327.2000.01133.xSearch in Google Scholar PubMed

Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature414, 813–820.10.1038/414813aSearch in Google Scholar PubMed

Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science303, 2011–2015.10.1126/science.1094637Search in Google Scholar PubMed

Cantley, L.C. and Neel, B.G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA96, 4240–4245.10.1073/pnas.96.8.4240Search in Google Scholar PubMed PubMed Central

Cantrell, D.A. (2001). Phosphoinositide 3-kinase signalling pathways. J. Cell Sci.114, 1439–1445.10.1242/jcs.114.8.1439Search in Google Scholar PubMed

Caselli, A., Marzocchini, R., Camici, G., Manao, G., Moneti, G., Pieraccini, G., and Ramponi, G. (1998). The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J. Biol. Chem.273, 32554–32560.10.1074/jbc.273.49.32554Search in Google Scholar PubMed

Ceconi, C., Boraso, A., Cargnoni, A., and Ferrari, R. (2003). Oxidative stress in cardiovascular disease: myth or fact?Arch. Biochem. Biophys.420, 217–221.10.1016/j.abb.2003.06.002Search in Google Scholar PubMed

Ceriello, A. (2000). Oxidative stress and glycemic regulation. Metabolism49, 27–29.10.1016/S0026-0495(00)80082-7Search in Google Scholar

Chang, T.S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., and Rhee, S.G. (2004). Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem.279, 50994–51001.10.1074/jbc.M409482200Search in Google Scholar

Cho, S.H., Lee, C.H., Ahn, Y., Kim, H., Kim, H., Ahn, C.Y., Yang, K.S., and Lee, S.R. (2004). Redox regulation of PTEN and protein tyrosine phosphatases in H2O2 mediated cell signaling. FEBS Lett.560, 7–13.10.1016/S0014-5793(04)00112-7Search in Google Scholar

Chu, F., Ward, N.E., and O'Brian, C.A. (2001). Potent inactivation of representative members of each PKC isozyme subfamily and PKD via S-thiolation by the tumor-promotion/progression antagonist glutathione but not by its precursor cysteine. Carcinogenesis22, 1221–1229.10.1093/carcin/22.8.1221Search in Google Scholar

Cohen, P.T. (1997). Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem. Sci.22, 245–251.10.1016/S0968-0004(97)01060-8Search in Google Scholar

Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–789.10.1038/378785a0Search in Google Scholar

Daily, D., Vlamis-Gardikas, A., Offen, D., Mittelman, L., Melamed, E., Holmgren, A., and Barzilai, A. (2001). Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by dual activation of the ras-phosphoinositide 3-kinase and Jun N-terminal kinase pathways. J. Biol. Chem.276, 21618–21626.10.1074/jbc.M101400200Search in Google Scholar

Daitoku, H., Hatta, M., Matsuzaki, H., Aratani, S., Ohshima, T., Miyagishi, M., Nakajima, T., and Fukamizu, A. (2004). Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. USA101, 10042–10047.10.1073/pnas.0400593101Search in Google Scholar

Devasagayam, T.P., Sundquist, A.R., Di Mascio, P., Kaiser, S., and Sies, H. (1991). Activity of thiols as singlet molecular oxygen quenchers. J. Photochem. Photobiol. B9, 105–116.10.1016/1011-1344(91)80008-6Search in Google Scholar

Downes, C.P., Walker, S., McConnachie, G., Lindsay, Y., Batty, I.H., and Leslie, N.R. (2004). Acute regulation of the tumour suppressor phosphatase, PTEN, by anionic lipids and reactive oxygen species. Biochem. Soc. Trans.32, 338–342.10.1042/bst0320338Search in Google Scholar PubMed

Dringen, R. (2000). Metabolism and functions of glutathione in brain. Prog. Neurobiol.62, 649–671.10.1016/S0301-0082(99)00060-XSearch in Google Scholar

Evans, J.L. and Goldfine, I.D. (2000). α-Lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol. Ther.2, 401–413.10.1089/15209150050194279Search in Google Scholar

Evans, M.D., and Cooke, M.S. (2004). Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays26, 533–542.10.1002/bies.20027Search in Google Scholar

Fauman, E.B. and Saper, M.A. (1996). Structure and function of the protein tyrosine phosphatases. Trends. Biochem. Sci.21, 413–417.10.1016/S0968-0004(96)10059-1Search in Google Scholar

Fernandes, A.P. and Holmgren, A. (2004). Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox Signal.6, 63–74.10.1089/152308604771978354Search in Google Scholar PubMed

Forman, H.J., Fukuto, J.M., and Torres, M. (2004). Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am. J. Physiol. Cell Physiol.287, C246–C256.10.1152/ajpcell.00516.2003Search in Google Scholar PubMed

Foster, F.M., Traer, C.J., Abraham, S.M., and Fry, M.J. (2003). The phosphoinositide (PI) 3-kinase family. J. Cell Sci.116, 3037–3040.10.1242/jcs.00609Search in Google Scholar PubMed

Georgiou, G. and Masip, L. (2003). Biochemistry. An overoxidation journey with a return ticket. Science300, 592–594.Search in Google Scholar

Grether-Beck, S., Bonizzi, G., Schmitt-Brenden, H., Felsner, I., Timmer, A., Sies, H., Johnson, J.P., Piette, J., and Krutmann, J. (2000). Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation. EMBO J.19, 5793–5800.10.1093/emboj/19.21.5793Search in Google Scholar PubMed PubMed Central

Hirota, K., Nakamura, H., Masutani, H., and Yodoi, J. (2002). Thioredoxin superfamily and thioredoxin-inducing agents. Ann. NY Acad. Sci.957, 189–199.10.1111/j.1749-6632.2002.tb02916.xSearch in Google Scholar PubMed

Hoffman, B.T., Nelson, M.R., Burdick, K., and Baxter, S.M. (2004). Protein tyrosine phosphatases: strategies for distinguishing proteins in a family containing multiple drug targets and anti-targets. Curr. Pharm. Des.10, 1161–1181.10.2174/1381612043452659Search in Google Scholar PubMed

Holmgren, A. (1989). Thioredoxin and glutaredoxin systems. J. Biol. Chem.264, 13963–13966.10.1016/S0021-9258(18)71625-6Search in Google Scholar

Holmgren, A. (2000). Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox Signal.2, 811–820.10.1089/ars.2000.2.4-811Search in Google Scholar

Hu, M.C., Lee, D.F., Xia, W., Golfman, L.S., Ou-Yang, F., Yang, J.Y., Zou, Y., Bao, S., Hanada, N., Saso, H., et al. (2004). IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell117, 225–237.10.1016/S0092-8674(04)00302-2Search in Google Scholar

Huang, K.P. and Huang, F.L. (2002). Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem. Pharmacol.64, 1049–1056.10.1016/S0006-2952(02)01175-9Search in Google Scholar

Humphries, K.M., Juliano, C., and Taylor, S.S. (2002). Regulation of cAMP-dependent protein kinase activity by glutathionylation. J. Biol. Chem.277, 43505–43511.10.1074/jbc.M207088200Search in Google Scholar PubMed

Hwangbo, D.S., Gersham, B., Tu, M.P., Palmer, M., and Tatar, M. (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature429, 562–566.10.1038/nature02549Search in Google Scholar PubMed

Jacob, C., Giles, G.I., Giles, N.M., and Sies, H. (2003). Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed.42, 4742–4758.10.1002/anie.200300573Search in Google Scholar PubMed

Ji, C., Kozak, K.R., and Marnett, L.J. (2001). IκB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J. Biol. Chem.276, 18223–18228.10.1074/jbc.M101266200Search in Google Scholar PubMed

Juhaszova, M., Zorov, D.B., Kim, S.H., Pepe, S., Fu, Q., Fishbein, K.W., Ziman, B.D., Wang, S., Ytrehus, K., Antos, C.L., et al. (2004). Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest.113, 1535–1549.10.1172/JCI19906Search in Google Scholar PubMed PubMed Central

Klatt, P. and Lamas, S. (2000). Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur. J. Biochem.267, 4928–4944.10.1046/j.1432-1327.2000.01601.xSearch in Google Scholar PubMed

Klatt, P., Molina, E.P., De Lacoba, M.G., Padilla, C.A., Martinez-Galesteo, E., Barcena, J.A., and Lamas, S. (1999). Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J.13, 1481–1490.10.1096/fasebj.13.12.1481Search in Google Scholar

Klaunig, J.E. and Kamendulis, L.M. (2004). The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol.44, 239–267.10.1146/annurev.pharmtox.44.101802.121851Search in Google Scholar

Klotz, L.O. (2002). Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen. Biol. Chem.383, 443–456.10.1515/BC.2002.047Search in Google Scholar

Klotz, L.O., Schieke, S.M., Sies, H., and Holbrook, N.J. (2000). Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts. Biochem. J.352, 219–225.10.1042/bj3520219Search in Google Scholar

Knebel, A., Rahmsdorf, H.J., Ullrich, A., and Herrlich, P. (1996). Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J.15, 5314–5325.10.1002/j.1460-2075.1996.tb00916.xSearch in Google Scholar

Knobbe, C.B., Merlo, A., and Reifenberger, G. (2002). Pten signaling in gliomas. Neuro-oncology4, 196–211.10.1215/15228517-4-3-196Search in Google Scholar

Kolmodin, K. and Aqvist, J. (2001). The catalytic mechanism of protein tyrosine phosphatases revisited. FEBS Lett.498, 208–213.10.1016/S0014-5793(01)02479-6Search in Google Scholar

Konishi, H., Matsuzaki, H., Tanaka, M., Takemura, Y., Kuroda, S., Ono, Y., and Kikkawa, U. (1997). Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein hsp27. FEBS Lett.410, 493–498.10.1016/S0014-5793(97)00541-3Search in Google Scholar

Kops, G.J., Dansen, T.B., Polderman, P.E., Saarloos, I., Wirtz, K.W., Coffer, P.J., Huang, T.T., Bos, J.L., Medema, R.H., and Burgering, B.M. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature419, 316–321.10.1038/nature01036Search in Google Scholar PubMed

Kröncke, K.D., Klotz, L.O., Suschek, C.V., and Sies, H. (2002). Comparing nitrosative versus oxidative stress toward zinc finger-dependent transcription. Unique role for NO. J. Biol. Chem.277, 13294–13301.10.1074/jbc.M111216200Search in Google Scholar PubMed

Kwon, Y.W., Masutani, H., Nakamura, H., Ishii, Y., and Yodoi, J. (2003). Redox regulation of cell growth and cell death. Biol. Chem.384, 991–996.10.1515/BC.2003.111Search in Google Scholar

Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem.273, 15366–15372.10.1074/jbc.273.25.15366Search in Google Scholar

Lee, S.R., Yang, K.S., Kwon, J., Lee, C., Jeong, W., and Rhee, S.G. (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem.277, 20336–20342.10.1074/jbc.M111899200Search in Google Scholar

Lee, S.S., Kennedy, S., Tolonen, A.C., and Ruvkun, G. (2003). DAF-16 target genes that control C. elegans life-span and metabolism. Science300, 644–647.Search in Google Scholar

Leslie, N.R., and Downes, C.P. (2004). PTEN function: how normal cells control it and tumour cells lose it. Biochem. J.382, 1–11.10.1042/BJ20040825Search in Google Scholar

Leslie, N.R., Bennett, D., Lindsay, Y.E., Stewart, H., Gray, A., and Downes, C.P. (2003). Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J.22, 5501–5510.10.1093/emboj/cdg513Search in Google Scholar

Liu, W., Akhand, A.A., Kato, M., Yokoyama, I., Miyata, T., Kurokawa, K., Uchida, K., and Nakashima, I. (1999). 4-Hydroxynonenal triggers an epidermal growth factor receptor-linked signal pathway for growth inhibition. J. Cell Sci.112, 2409–2417.10.1242/jcs.112.14.2409Search in Google Scholar

Lizcano, J.M. and Alessi, D.R. (2002). The insulin signalling pathway. Curr. Biol.12, R236–R238.10.1016/S0960-9822(02)00777-7Search in Google Scholar

MacMillan-Crow, L.A., Greendorfer, J.S., Vickers, S.M., and Thompson, J.A. (2000). Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch. Biochem. Biophys.377, 350–356.10.1006/abbi.2000.1799Search in Google Scholar PubMed

Maddux, B.A., See, W., Lawrence, J.C. Jr, Goldfine, A.L., Goldfine, I.D., and Evans J.L. (2001). Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by mircomolar concentrations of α-lipoic acid. Diabetes50, 404–410.10.2337/diabetes.50.2.404Search in Google Scholar PubMed

Mahimainathan, L. and Choudhury, G.G. (2004). Inactivation of platelet-derived growth factor receptor by the tumor suppressor PTEN provides a novel mechanism of action of the phosphatase. J. Biol. Chem.279, 15258–15268.10.1074/jbc.M314328200Search in Google Scholar PubMed

Marnett, L.J. (2000). Oxyradicals and DNA damage. Carcinogenesis21, 361–370.10.1093/carcin/21.3.361Search in Google Scholar

Meek, D.W. (1999). Mechanism of switching on p53: a role for covalent modification?Oncogene18, 7666–7675.10.1038/sj.onc.1202951Search in Google Scholar

Meuillet, E.J., Mahadevan, D., Berggren, M., Coon, A., and Powis, G. (2004). Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity. Arch. Biochem. Biophys.429, 123–133.10.1016/j.abb.2004.04.020Search in Google Scholar

Millward, T.A., Zolnierowicz, S., and Hemmings, B.A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci.24, 186–191.10.1016/S0968-0004(99)01375-4Search in Google Scholar

Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., and Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell116, 551–563.10.1016/S0092-8674(04)00126-6Search in Google Scholar

Murata, H., Ihara, Y., Nakamura, H., Yodoi, J., Sumikawa, K., and Kondo, T. (2003). Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J. Biol. Chem.278, 50226–50233.10.1074/jbc.M310171200Search in Google Scholar PubMed

Murphy, E. (2004). Inhibit GSK-3β or there's heartbreak dead ahead. J. Clin. Invest113, 1526–1528.10.1172/JCI200421986Search in Google Scholar

Namgaladze, D., Hofer, H.W., and Ullrich, V. (2002). Redox control of calcineurin by targeting the binuclear Fe2+-Zn2+ center at the enzyme active site. J. Biol. Chem.277, 5962–5969.10.1074/jbc.M111268200Search in Google Scholar PubMed

Nemoto, S. and Finkel, T. (2002). Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science295, 2450–2452.10.1126/science.1069004Search in Google Scholar PubMed

Ostrakhovitch, E.A., Lordnejad, M.R., Schliess, F., Sies, H., and Klotz, L.O. (2002). Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species. Arch. Biochem. Biophys.397, 232–239.10.1006/abbi.2001.2559Search in Google Scholar PubMed

Ozes, O.N., Mayo, L.D., Gustin, J.A., Pfeffer, S.R., Pfeffer, L.M., and Donner, D.B. (1999). NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature401, 82–85.10.1038/43466Search in Google Scholar

Paolisso, G. and Giugliano, D. (1996). Oxidative stress and insulin action: is there a relationship?Diabetologia39, 357–363.10.1007/BF00418354Search in Google Scholar

Parola, M., Robino, G., Marra, F., Pinzani, M., Bellomo, G., Leonarduzzi, G., Chiarugi, P., Camandola, S., Poli, G., Waeg, G., et al. (1998). HNE interacts directly with JNK isoforms in human hepatic stellate cells. J. Clin. Invest102, 1942–1950.10.1172/JCI1413Search in Google Scholar

Paz, K., Hemi, R., LeRoith, D., Karasik, A., Elhanany, E., Kanety, H., and Zick, Y. (1997). A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J. Biol. Chem.272, 29911–29918.10.1074/jbc.272.47.29911Search in Google Scholar

Rao, R.K. and Clayton, L.W. (2002). Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem. Biophys. Res. Commun.293, 610–616.10.1016/S0006-291X(02)00268-1Search in Google Scholar

Rauh, M.J., Kalesnikoff, J., Hughes, M., Sly, L., Lam, V., and Krystal, G. (2003). Role of Src homology 2-containing-inositol-5′-phosphatase (SHIP) in mast cells and macrophages. Biochem. Soc. Trans.31, 286–291.10.1042/bst0310286Search in Google Scholar PubMed

Romashkova, J.A. and Makarov, S.S. (1999). NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature401, 86–90.10.1038/43474Search in Google Scholar PubMed

Rudich, A., Kozlovsky, N., Potashnik, R., and Bashan, N. (1997). Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am. J. Physiol.272, E935–E940.10.1152/ajpendo.1997.272.5.E935Search in Google Scholar PubMed

Rudich, A., Tirosh, A., Potashnik, R., Khamaisi, M., and Bashan, N. (1999). Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia42, 949–957.10.1007/s001250051253Search in Google Scholar PubMed

Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal- regulating kinase (ASK) 1. EMBO J.17, 2596–2606.10.1093/emboj/17.9.2596Search in Google Scholar PubMed PubMed Central

Salmeen, A., Andersen, J.N., Myers, M.P., Meng, T.C., Hinks, J.A., Tonks, N.K., and Barford, D. (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature423, 769–773.10.1038/nature01680Search in Google Scholar

Saltiel, A.R. and Pessin, J.E. (2002). Insulin signaling pathways in time and space. Trends Cell Biol.12, 65–71.10.1016/S0962-8924(01)02207-3Search in Google Scholar

Sander, C.S., Chang, H., Hamm, F., Elsner, P., and Thiele, J.J. (2004). Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int. J. Dermatol.43, 326–335.10.1111/j.1365-4632.2004.02222.xSearch in Google Scholar

Savitsky, P.A. and Finkel, T. (2002). Redox regulation of Cdc25C. J. Biol. Chem.277, 20535–20540.10.1074/jbc.M201589200Search in Google Scholar

Schenk, H., Klein, M., Erdbrugger, W., Dröge, W., and Schulze-Osthoff, K. (1994). Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-κB and AP-1. Proc. Natl. Acad. Sci. USA91, 1672–1676.10.1073/pnas.91.5.1672Search in Google Scholar

Schieke, S.M., von Montfort, C., Buchczyk, D.P., Timmer, A., Grether-Beck, S., Krutmann, J., Holbrook, N.J., and Klotz, L.O. (2004). Singlet oxygen-induced attenuation of growth factor signaling: possible role of ceramides. Free Radic. Res.38, 729–737.10.1080/10715760410001712764Search in Google Scholar

Sies, H. (1985). Oxidative stress: introductory remarks. In: Oxidative Stress, H. Sies, ed. (London, UK: Academic Press), pp. 1–8.10.1016/B978-0-12-642760-8.50005-3Search in Google Scholar

Sies, H. (1999). Glutathione and its role in cellular functions. Free Radic. Biol. Med.27, 916–921.10.1016/S0891-5849(99)00177-XSearch in Google Scholar

Sommer, D., Coleman, S., Swanson, S.A., and Stemmer, P.M. (2002). Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Arch. Biochem. Biophys.404, 271–278.10.1016/S0003-9861(02)00242-4Search in Google Scholar

Song, J.J., Rhee, J.G., Suntharalingam, M., Walsh, S.A., Spitz, D.R., and Lee, Y.J. (2002). Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J. Biol. Chem.277, 46566–46575.10.1074/jbc.M206826200Search in Google Scholar PubMed

Stocker, R. and Keaney, J.F. Jr. (2004). Role of oxidative modifications in atherosclerosis. Physiol Rev.84, 1381–1478.10.1152/physrev.00047.2003Search in Google Scholar

Takada, Y., Fang, X., Jamaluddin, M.S., Boyd, D.D., and Aggarwal, B.B. (2004). Genetic deletion of glycogen synthase kinase-3beta abrogates activation of IκBα kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by tumor necrosis factor. J. Biol. Chem.279, 39541–39554.10.1074/jbc.M403449200Search in Google Scholar

Takakura, K., Beckman, J.S., MacMillan-Crow, L.A., and Crow, J.P. (1999). Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. Arch. Biochem. Biophys.369, 197–207.10.1006/abbi.1999.1374Search in Google Scholar

Ueno, M., Masutani, H., Arai, R.J., Yamauchi, A., Hirota, K., Sakai, T., Inamoto, T., Yamaoka, Y., Yodoi, J., and Nikaido, T. (1999). Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J. Biol. Chem.274, 35809–35815.10.1074/jbc.274.50.35809Search in Google Scholar

van der Horst A., Tertoolen, L.G., Vries-Smits, L.M., Frye, R.A., Medema, R.H., and Burgering, B.M. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem.279, 28873–28879.10.1074/jbc.M401138200Search in Google Scholar

van Montfort, R.L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. (2003). Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature423, 773–777.10.1038/nature01681Search in Google Scholar

Vanhaesebroeck, B. and Alessi, D.R. (2000). The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J.346, 561–576.10.1042/bj3460561Search in Google Scholar

von Montfort, C., Metzger, S., and Klotz, L.O. (2004). Singlet oxygen inactivates protein tyrosine phosphatases by oxidation of the active site cysteine. Free Radic. Biol. Med.37, S112.Search in Google Scholar

Wang, X., McCullough, K.D., Franke, T.F., and Holbrook, N.J. (2000). Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem.275, 14624–14631.10.1074/jbc.275.19.14624Search in Google Scholar

Wiernsperger, N.F. (2003). Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab.29, 579–585.10.1016/S1262-3636(07)70072-1Search in Google Scholar

Woo, H.A., Chae, H.Z., Hwang, S.C., Yang, K.S., Kang, S.W., Kim, K., and Rhee, S.G. (2003). Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science300, 653–656.10.1126/science.1080273Search in Google Scholar PubMed

Zhuang, S. and Kochevar, I.E. (2003). Singlet oxygen-induced activation of Akt/protein kinase B is independent of growth factor receptors. Photochem. Photobiol.78, 361–371.10.1562/0031-8655(2003)078<0361:SOAOPK>2.0.CO;2Search in Google Scholar

Published Online: 2005-07-05
Published in Print: 2005-03-01

©2004 by Walter de Gruyter Berlin New York

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.026/html
Scroll to top button