Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 26, 2015

Effectiveness of red alga Asparagopsis taxiformis extracts against Leishmania infantum

  • Fabrizio Vitale , Giuseppa Genovese , Federica Bruno , Germano Castelli , Maria Piazza , Antonella Migliazzo , Simona Armeli Minicante , Antonio Manghisi and Marina Morabito
From the journal Open Life Sciences

Abstract

Leishmaniasis is a disease with a worldwide distribution affecting both humans and animals. There is a need to identify and develop new drugs for the treatment of leishmaniasis. This study showed that crude ethanolic extracts of the red alga Asparagopsis taxiformis have a powerful effect against L. infantum, the prevalent species of the genus Leishmania in the Mediterranean basin. L. infantum demonstrated decreased vitality with increasing concentration of the algal extracts. At a concentration of 40 μg/mL, the extracts achieved 100% mortality of the parasite and the LD50 value was 25 μg/mL for promastigotes and 9 μg/mL for amastigotes. Algal extracts caused morphological alterations and apoptosis in Leishmania cells. The potential cytotoxic action of crude extracts was investigated by a MTT viability assay on DH82 and Vero cell lines but there was no cytotoxic effect. The potential of red alga A. taxiformis metabolites as anti-leishmanial agents merits further pharmacological investigation.

References

[1] Anonymous, WHO - Leishmaniasis (http://www.who.int/ leishmaniasis/en/), 2014. Search in Google Scholar

[2] Meena A.K., Kandale A., Nigam S., Panda P., Singh B., Rao M.M., Review on Marine organisms with antileishmanial activity, J. Pharm. Res., 2010, 3, 818-821. Search in Google Scholar

[3] Croft S.L., Recent development in the chemotherapy of leishmaniasis, Trends Pharmacol. Sci., 1988, 9, 376-381. 10.1016/0165-6147(88)90258-1Search in Google Scholar

[4] Ribeiro A.L., Drummond J.B., Volpini A.C., Andrade A.C., Passos V.M., Electocardiographic changes during low-dose, short term therapy of cutaneous leishmaniasis with pentavalent antimonial meglumine, Braz. J. Med. Biol. Res., 1999, 32, 297-301. 10.1590/S0100-879X1999000300008Search in Google Scholar

[5] Berma J.D., Treatment of new world cutaneous and mucosal leishmaniasis, Clin. Dermatol., 1996, 14, 519-522. 10.1016/0738-081X(96)00048-XSearch in Google Scholar

[6] Mayer A.M.S., Rodríguez A.D., Berlinck R.G.S., Fusetani N., Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action, Comp. Biochem. Phys. C, 2011, 153, 191-222. Search in Google Scholar

[7] Newman D.J., Cragg G.M., Snader K.M., Natural products as sources of new drugs over the period 1981-2002, J. Nat. Prod., 2003, 66, 1022-1037. 10.1021/np030096lSearch in Google Scholar PubMed

[8] Blunt J.W., et al., Marine natural products, Nat. Prod. Rep., 2008, 25, 35-94. 10.1039/b701534hSearch in Google Scholar PubMed

[9] Fouladvand M., Barazesh A., Farokhzad F., Malekizadeh H., Sartavi K., Evaluation of in vitro anti-Leishmanial activity of some brown, green and red algae from the Persian Gulf, Eur. Rev. Med. Pharmacol. Sci., 2011, 15, 597. Search in Google Scholar

[10] Allmendinger A., Spavieri J., Kaiser M., Casey R., Hingley- Wilson S., Lalvani A., et al., Antiprotozoal, antimycobacterial and cytotoxic potential of twenty-three British and Irish red algae, Phytother. Res., 2011, 24, 1099-1103. 10.1002/ptr.3094Search in Google Scholar PubMed

[11] Ballesteros E., Martin D., Uriz M.J., Biological Activity of Extracts from Some Mediterranean Macrophytes, Bot. Mar., 1992, 35, 481-485. 10.1515/botm.1992.35.6.481Search in Google Scholar

[12] Bouhlal R., Riadi H., Martínez J., Bourgougnon N., The antibacterial potential of the seaweeds (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean Coast of Morocco, Afr. J. Biotechnol., 2010, 9, 6365-6372. 10.5897/AJB09.2023Search in Google Scholar

[13] Chanda S., Dave R., Kaneria M., Nagani K., Seaweeds: A novel, untapped source of drugs from sea to combat Infectious diseases, In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Méndez-Vilas A. (Ed.), Formatex, 2010. Search in Google Scholar

[14] Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’incecco A., Piccoli A., Totani L., et al., A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, 2007, 17, 541–552. 10.1093/glycob/cwm014Search in Google Scholar PubMed

[15] Dhargalkar V.K., Verlecar X.N., Southern Ocean seaweeds: a resource for exploration in food and drugs, Aquaculture, 2009, 287, 229–242. 10.1016/j.aquaculture.2008.11.013Search in Google Scholar

[16] Gonzalez Del Val A., et al., Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain), Int. Microbiol., 2001, 4, 35-40. 10.1007/s101230100006Search in Google Scholar

[17] Kamenarska Z., Serkedjieva J., Najdenski H., Stefanov K., Tsvetkova I., Dimitrova-Konaklieva S., et al., Antibacterial, antiviral, and cytotoxic activities of some red and brown seaweeds from the Black Sea, Bot. Mar., 2009, 52, 80-86. 10.1515/BOT.2009.030Search in Google Scholar

[18] Shanmughapriya S., Manilal A., Sujith S., Selvin J., Kiran G., Natarajaseenivasan K., Antimicrobial activity of seaweeds extracts against multiresistant pathogens, Ann. Microbiol., 2008, 58, 535-541. 10.1007/BF03175554Search in Google Scholar

[19] Smit A.J., Medicinal and pharmaceutical uses of seaweed natural products: A review, J. Appl. Phycol., 2004, 16. 10.1023/B:JAPH.0000047783.36600.efSearch in Google Scholar

[20] Talarico L.B., et al., Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata, Int. J. Biol. Macromol., 2004, 34, 63-71. 10.1016/j.ijbiomac.2004.03.002Search in Google Scholar

[21] Vallinayagam K., Arumugam R., Ragupathi Raja Kannan R., Thirumaran G., Anantharaman P., Antibacterial Activity of Some Selected Seaweeds from Pudumadam Coastal Regions, Glob. J. Pharmacol., 2009, 3, 50-52. Search in Google Scholar

[22] Vonthron-Sénécheau C., et al., Antiprotozoal activities of organic extracts from french marine seaweeds, Mar. Drugs, 2011, 9, 922-933. 10.3390/md9060922Search in Google Scholar

[23] Bansemir A., Blume M., Schröder S., Lindequist U., Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria, Aquaculture, 2006, 252, 79-84. 10.1016/j.aquaculture.2005.11.051Search in Google Scholar

[24] Burreson B.J., Moore R.E., Roller P., Haloforms in the essential oil of the alga Asparagopsis taxiformis (Rhodophyta), Tetrahedron Lett., 1975, 473-476. 10.1016/S0040-4039(00)71897-1Search in Google Scholar

[25] Genovese G., Tedone L., Hamann M.T., Morabito M., The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania, Mar. Drugs, 2009, 7, 361-366. 10.3390/md7030361Search in Google Scholar PubMed PubMed Central

[26] Jiao G., Yu G., Zhang J., Ewart H.S., Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae, Mar. Drugs, 2011, 9, 196-223. 10.3390/md9020196Search in Google Scholar PubMed PubMed Central

[27] Mcconnell O., Fenical W., Halogen chemistry of the red alga Asparagopsis, Phytochemistry, 1977, 16, 367-374. 10.1016/0031-9422(77)80067-8Search in Google Scholar

[28] Salvador N., Gomez Garreta A., Lavelli L., Ribera M.A., Antimicrobial activity of Iberian macroalgae, Sci. Mar., 2007, 71, 101-113. 10.3989/scimar.2007.71n1101Search in Google Scholar

[29] Genovese G., Faggio C., Gugliandolo C., Torre A., Spanò A., Morabito M., et al., In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture, Mar. Environ. Res., 2012, 73, 1-6. 10.1016/j.marenvres.2011.10.002Search in Google Scholar

[30] Limoncu M.E., Balcioglu I., Yereli K., Ozbel Y., Ozbilgin A., A new experimental in vitro culture medium for cultivation of Leishmania species, J. Clin. Microbiol., 1997, 35, 2430-2431. 10.1128/jcm.35.9.2430-2431.1997Search in Google Scholar

[31] Carmichael J., Degraff W.G., Gazdar A.F., Minna J.D., Mitchell J.B., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 1987, 47, 936–942. Search in Google Scholar

[32] Pessotti J.H., Zaverucha Do Valle T., Corte-Real S., Gonçalve Da Costa S.C., Interaction of Leishmania (L.) chagasi with the Vero cell line, Parasite, 2004, 11, 99-102. 10.1051/parasite/200411199Search in Google Scholar

[33] Ashford R.W., The leishmaniases as emerging and reemerging zoonoses, Int. J. Parasitol., 2000, 30, 1269-1281. 10.1016/S0020-7519(00)00136-3Search in Google Scholar

[34] Courtenay O., Quinnell R.J., Garcez L.M., Shaw J.J., Dye C., Infectiousness in a cohort of Brazilian dogs: why culling fails to control visceral leishmaniasis in areas of high transmission, J. Infect. Dis., 2002, 186, 1314-1320. 10.1086/344312Search in Google Scholar PubMed

[35] McClintock J.B., Baker J.B., Marine Chemical Ecology, CRC Press, Boca Raton, Florida, 2001. 10.1201/9781420036602Search in Google Scholar

[36] Ioannou E., Vagias C., Roussis V., Bioactive metabolites from marine algae, Bio. Environ., 2010, 26, 68-72. 10.1021/np900298aSearch in Google Scholar PubMed

Received: 2014-6-9
Accepted: 2014-11-20
Published Online: 2015-10-26

©2015 Fabrizio Vitale et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.1515/biol-2015-0050/html
Scroll to top button