Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 17, 2014

Kinetics of aquation of [Co(ODA)(H2O)3] induced by Fe(III)

  • Dariusz Wyrzykowski , Dagmara Jacewicz , Joanna Pranczk , Natalia Sobolewska , Aleksandra Tesmar and Lech Chmurzyński
From the journal Open Chemistry

Abstract

The aquation reaction of the oxydiacetate cobalt(II) complex, namely [Co(ODA)(H2O)2]•H2O (ODA = oxydiacetate), induced by the Fe(III) ions as the promoter has been studied spectrophotometrically (UV-Vis). Kinetic measurements were carried out in the 283.15 - 303.15 K temperature range and at a constant ionic strength of 1.0 M (NaNO3). The observed rate constants were computed by a program based on global analysis. Furthermore, the reaction activation parameters were determined using the Arrhenius and Eyring equations. The changes in the enthalpy, entropy as well as activation energy barriers were calculated in the range of 0.00125 M – 0.125 M of the Fe(III) ion concentration. Based on kinetic data a mechanism for the aquation of the [Co(ODA)(H2O)3] complex has been proposed.

Graphical Abstract

References

[1] A. Brausam et al., Detailed Spectroscopic, Inorg. Chem. 48, 7864 (2009) 10.1021/ic900834zSearch in Google Scholar

[2] N. Summa et al., Inorg Chem. 45, 2948 (2006) 10.1021/ic051955rSearch in Google Scholar

[3] D.T. Richens, Chem. Rev. 105, 1961 (2005) 10.1021/cr030705uSearch in Google Scholar

[4] D. Jacewicz, A. Dąbrowska, L. Chmurzyński, J. Coord. Chem. 64, 2834 (2011) Search in Google Scholar

[5] S. Das, R.N. Banerjee, D. Banerjea, J. Coord. Chem. 13, 123 (1984) 10.1080/00958978408079764Search in Google Scholar

[6] E. Kita, Transit. Met. Chem. 26, 551 (2001) 10.1023/A:1011092806384Search in Google Scholar

[7] A. Grirrane et al., J. Chem. Soc. Dalton Trans. 3771 (2002) 10.1039/B201885CSearch in Google Scholar

[8] M.L. Johanson et al., J. Biophys. 36, 575 (1981) 10.2307/40201981Search in Google Scholar

[9] J.F. Nagel, L.A. Parodi, R.H. Lozier, Procedure for testing kinetic models of the photocycle of bacteriorhodopsin, J. Biophys., 38, 161 (1982) 10.1016/S0006-3495(82)84543-8Search in Google Scholar

[10] J.R. Knutson, J.M. Beechem, L. Brand, Chem. Phys. Lett. 102, 501 (1983) 10.1016/0009-2614(83)87454-5Search in Google Scholar

[11] M. Maeder, A. Zuberbuchler, Anal. Chem. 64, 2220 (1990) 10.1021/ac00219a013Search in Google Scholar

[12] A. Grirrane, A. Pastor, E. Álvarez, M. González, A. Galindo, Polyhedron 26, 3343 (2007) 10.1002/ejic.200700075Search in Google Scholar

[13] A. Grirrane, A. Pastor, E. Álvarez, C. Mealli, A. Lenco, P. Rosa, A. Galindo, Eur. J. Inorg. Chem. 3543 (2007) 10.1002/ejic.200700075Search in Google Scholar

[14] D. A. House, R. van Eldik, Inorg. Chim. Acta 230, 29 (1995) 10.1016/0020-1693(94)04300-KSearch in Google Scholar

[15] E. Kita, Transit. Met. Chem. 26, 551 (2001) 10.1023/A:1011092806384Search in Google Scholar

[16] W.E. Hatfield, J.H. Helms, B.R. Rohrs, P. Singh, J.R. Wasson, R.R. Weller, Proc. Indian Acad. Sci. (Chem. Sci.) 98, 23 (1987) 10.1007/BF02886279Search in Google Scholar

[17] P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990) 10.1103/RevModPhys.62.251Search in Google Scholar

[18] H. Eyring, Chem. Rev. 17, 65 (1935) 10.1021/cr60056a006Search in Google Scholar

Received: 2014-9-23
Accepted: 2014-7-5
Published Online: 2014-11-17

© 2015 Dariusz Wyrzykowski et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0027/html
Scroll to top button