Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access June 8, 2020

Stochastic MMSIF of multiple edge cracks FGMs plates subjected to combined loading using XFEM

  • Achchhe Lal EMAIL logo and Kundan Mishra

Abstract

The second order statistics of multiple edge crack functionally graded materials (FGMs) under tensile, shear and combined loading assuming uncertain system parameters is presented in this paper. The uncertain parameters used under the present study are the material properties, and crack parameters such as crack length and crack angle. In this present analysis extended finite element method (XFEM) is used. The stochastic analysis is carried out using second order perturbation technique (SOPT) for the evaluation of mean and coefficient of variance (COV) of mixed mode stress intensity factor (MMSIF).

References

[1] Jha D.K.., Kant T., Singh R.K.., A critical review of recent research on functionally graded plates, Compos. Struct., 2013, 96, 833-849.10.1016/j.compstruct.2012.09.001Search in Google Scholar

[2] Noor A.K.., Global-local methodologies and their application to nonlinear analysis, Finite Elem. Anal Des., 1986, 2, 333-346.10.1016/0168-874X(86)90020-XSearch in Google Scholar

[3] Swenson D., Ingraffea A., Modelling mixed mode dynamic crack propagation using finite elements, Theory and applications, Comput. Mec., 1988, 3, 381-397.10.1007/BF00301139Search in Google Scholar

[4] Beissel S.R., Johnson G.R., Popelar C.H., An element failure algorithm for dynamic crack propagation in general directions, Eng. Fract. Mech., 1998, 61, 407-425.10.1016/S0013-7944(98)00072-1Search in Google Scholar

[5] Song J.H., Wang H., Belytschko T.A., comparative study on finite element methods for dynamic fracture, Comput. Mech., 2008, 42, 239-250.10.1007/s00466-007-0210-xSearch in Google Scholar

[6] Kim D.J., Duarte C.A., Pereira J.P., Analysis of interacting cracks using generalized finite element method with global-local enrichment functions, J. Appl. Mech., 2008, 75, 1-12.10.1115/1.2936240Search in Google Scholar

[7] Shrivastava A.K., Lal A., Determination of fracture parameters for multiple edge cracks of a finite plate, Journal of Aircraft, 2013 50, 901-910.10.2514/1.C032036Search in Google Scholar

[8] Wang Z., Ma L., Wu L., Numerical simulation of crack growth through particulate clusters in brittle matrix using the XFEM technique, Procedia Engineering, 2011, 10, 786-791.10.1016/j.proeng.2011.04.130Search in Google Scholar

[9] Lin Y.K., Yang J.N., On statistical moments of fatigue crack propagation, Eng. Frac. Mech., 1983, 18, 243-256.10.1016/0013-7944(83)90136-4Search in Google Scholar

[10] Besterfield G.H., Liu W.K., Lawrenc,e M.A., Belytschko T., Fatigue crack growth reliability by probabilistic finite elements, Comput. Meth. Appl. Mech. Eng., 1991, 86, 297-320.10.1016/0045-7825(91)90225-USearch in Google Scholar

[11] Liu W.K., Chen Y., Belytschko T., Three reliability methods for fatigue crack growth, Eng. Fract. Mech. 1996, 53, 733-752.Search in Google Scholar

[12] Rahman S., A dimensional decomposition method for stochastic fracture mechanics, Eng. Fract. Mech., 2006, 73, 2093-2109.10.1016/j.engfracmech.2006.04.010Search in Google Scholar

[13] Xu H., Rahman S., A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics, Int. J. Numer Methods Eng., 2004, 61, 1992-2019.10.1002/nme.1135Search in Google Scholar

[14] Xu H., Rahman S., Decomposition methods for structural reliability analysis, Probab. Eng. Mech., 2005, 202, 39-50.Search in Google Scholar

[15] Chakraborty A., Rahman S., Stochastic multiscale models for fracture analysis of functionally graded material. Eng. Fract. mech., 2008, 75, 2062-2086.10.1016/j.engfracmech.2007.10.013Search in Google Scholar

[16] Rahman S., Rao B.N., An element free Galerkin method for probabilistic mechanics and reliability, Int. J. Solids. Struct, 2001, 38, 9313-9330.10.1016/S0020-7683(01)00193-7Search in Google Scholar

[17] Rao B.N., Rahman S., Probabilistic fracture mechanics by Galerkin meshless methods - part I: rates of stress intensity factors, Comput. Mech., 2002, 28, 351-364.10.1007/s00466-002-0299-xSearch in Google Scholar

[18] Reddy R.M., Rao ‘B.N., Stochastic fracture mechanics by fractal finite element method, Comput. Methods Appl. Mech. Engrg., 2008, 198, 459-474.10.1016/j.cma.2008.08.014Search in Google Scholar

[19] Evangelatos G.I., Spanos P.D., A collocation approach for spatial discretization of stochastic peri dynamic modeling of fracture, J. Mech. Mater and Struct., 2011, 6, 1171-1195.10.2140/jomms.2011.6.1171Search in Google Scholar

[20] Nobile L., Gentilini C., Three-dimensional frame structures with edge-cracks of uncertain depth and location, Recent Patents on Mech. Eng., 2008, 1, 12-21.10.2174/2212797610801010012Search in Google Scholar

[21] Nobile L., Gentilini C., Probabilistic analysis of cracked frame structures, Meccanica dei Materiali e delle Strute., 2012, 3, 57-64.Search in Google Scholar

[22] Nouy A., Clément A., Schoefs F., Moës N., An extended stochastic finite element method for solving stochastic partial differential equations on random domains, Comput. Meth. Appl. Mech. Eng., 2008, 197 4663-4682.10.1016/j.cma.2008.06.010Search in Google Scholar

[23] Nouy A., Clément A., Extended stochastic finite element method for the numerical simulation of heterogeneous materials with random material interfaces, Int. J. Numer. Meth. Eng., 2010, 83, 1312-1344.10.1002/nme.2865Search in Google Scholar

[24] Lang C., Dostan A., Maute K.., Extended stochastic FEM for diffusion problems with uncertain material interfaces, Comput. Mec., 2013, 51, 1031-1049.10.1007/s00466-012-0785-8Search in Google Scholar

[25] Nespurek L., Stochastic crack propagation modelling using extended finite element method, Ph.d thesis, Brno University of Technology, 2009.Search in Google Scholar

[26] Gope P.C., Bisht N., Singh V.K.., Influence of crack offset distance on interaction of multiple collinear and offset edge cracks in a rectangular plate, Theoretical and Applied Fracture Mechanics, 2014, 70, 19-29.10.1016/j.tafmec.2014.04.001Search in Google Scholar

[27] Chen M., Xu Z., Fan X., Evaluation of the T-stress and stress intensity factor for multi-crack problem using spline fictitious boundary element alternating method, Engineering Analysis with Boundary Elements, 2018, 94, 69-78.10.1016/j.enganabound.2018.06.004Search in Google Scholar

[28] Khanna A., Kotousov A., Mohabuth M., Bun ‘S., Three-dimensional analysis of an edge crack in a plate of finite thickness with the first-order plate theory, Theoretical and Applied Fracture Mechanics, 2018, 95, 155-163.10.1016/j.tafmec.2018.02.017Search in Google Scholar

[29] Kotousov A., Khanna A., Bun S., Analytical evaluation of the transverse displacement at the tip of a semi-infinite crack in an elastic plate, Theoretical and Applied Fracture Mechanics, 2017, 93, 288-292.10.1016/j.tafmec.2017.09.011Search in Google Scholar

[30] Monfared M.M., Bagheri R., Yaghoubi R., The mixed mode analysis of arbitrary configuration of cracks in an orthotropic FGM strip using the distributed edge dislocations, International Journal of Solids and Structures, 2017, 130-131, 21-35.10.1016/j.ijsolstr.2017.10.023Search in Google Scholar

[31] Muthu N., Maiti S.K., Yan W., Falzon B.G., Modelling interacting cracks through a level set using the element-free Galerkin method, International Journal of Mechanical Sciences, 2017, 134, 203-2015.10.1016/j.ijmecsci.2017.10.009Search in Google Scholar

[32] Kim J.H., Paulino G.H., Finite element evaluation of mixed mode stress intensity factors in functionally graded materials, Int. J. Numer. Methods Eng., 2002, 53 1903-1935.10.1002/nme.364Search in Google Scholar

[33] Shi M., Wu H., Li L., Chai G., Calculation of stress intensity factors for functionally graded materials by using the weight functions derived by the virtual crack extension technique, Int. J. Mech. Mater Des., 2014, 10, 65-77.10.1007/s10999-013-9231-0Search in Google Scholar

[34] Kumar P., Elements of fracture mechanics, McGraw hill education (India) private limited, 2009, 91.Search in Google Scholar

[35] Mohammadi S., Extended finite element method for fracture analysis of structures, Blackwell Oxford, 2008.10.1002/9780470697795Search in Google Scholar

[36] Shrivastava A.K., Lal A., Determination of fracture parameters for multiple edge cracks of a finite plate. Journal of Aircraft, 2013, 50 901-910.10.2514/1.C032036Search in Google Scholar

[37] Oliver J., Huespe A.E., Samaniego E., Chaves E.W.V., On strategies for tracking strong discontinuities in computational failure mechanics, Fifth World Congress on Computational Mechanics, 2002, July 7-12 Vienna, Austria.Search in Google Scholar

[38] Nouy A., Schoefs F., Moës N., X-SFEM, a computational technique based on X-FEM to deal with random shapes, Eur. J. Comput. Mech., 2007, 16, 277-293.10.3166/remn.16.277-293Search in Google Scholar

[39] Nouy A., Clément A., Schoefs F., Moës N., An extended stochastic finite element method for solving stochastic partial differential equations on random domains, Comput. Meth. Appl. Mech. Eng., 2008, 197 4663-4682.10.1016/j.cma.2008.06.010Search in Google Scholar

[40] Nespurek L., Stochastic crack propagation modeling using extended finite element method. Ph.d thesis, Brno University of Technology, 2009.Search in Google Scholar

Received: 2019-12-01
Accepted: 2020-05-03
Published Online: 2020-06-08

© 2020 Achchhe Lal et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/cls-2020-0004/html
Scroll to top button