Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access October 7, 2020

Nonlinear magneto-thermo-elastic vibration of mass sensor armchair carbon nanotube resting on an elastic substrate

  • Rajendran Selvamani EMAIL logo , M. Mahaveer Sree Jayan , Rossana Dimitri , Francesco Tornabene and Farzad Ebrahimi

Abstract

The present paper aims at studying the nonlinear ultrasonic waves in a magneto-thermo-elastic armchair single-walled (SW) carbon nanotube (CNT) with mass sensors resting on a polymer substrate. The analytical formulation accounts for small scale effects based on the Eringen’s nonlocal elasticity theory. The mathematical model and its differential equations are solved theoretically in terms of dimensionless frequencies while assuming a nonlinear Winkler-Pasternak-type foundation. The solution is obtained by means of ultrasonic wave dispersion relations. A parametric work is carried out to check for the effect of the nonlocal scaling parameter, together with the magneto-mechanical loadings, the foundation parameters, the attached mass, boundary conditions and geometries, on the dimensionless frequency of nanotubes. The sensitivity of the mechanical response of nanotubes investigated herein, could be of great interest for design purposes in nano-engineering systems and devices.

References

[1] Ebrahimi, F., Dabbagh, A., Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems, Waves Random Complex Medium, 2018, 1–21.10.1080/17455030.2018.1558308Search in Google Scholar

[2] Wang, Q., Wave propagation in carbon nanotubes via nonlocal continuum mechanics, J. Appl. Phys., 2005, 98, 124301–6.10.1063/1.2141648Search in Google Scholar

[3] Heirechea, H., Tounsi, A., Benzaira, A., Maachoua M.E.A., Adda Bedia, E.A.A. Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity, Physica E Low Dimens. Syst. Nanostruct., 2008, 40, 2791–2799.10.1016/j.physe.2007.12.021Search in Google Scholar

[4] Eringen, A.C., Nonlocal continuum field theories, springer, berlin, 2002.Search in Google Scholar

[5] Eringen. A.C., Edelen, D.G.B., On nonlocal elasticity, Int. J. Eng., 1972, 10(3), 233–248.10.1016/0020-7225(72)90039-0Search in Google Scholar

[6] Eringen, A.C., On differential equation of nonlocal elasticity and solution of screw dislocation and surface waves, J. Appl Phys., 1983,55,4703.Search in Google Scholar

[7] Wang, L., Hu, H., Guo, W., Validation of the non-local elastic shell model for studying longitudinal waves in single-walled carbon nanotubes, Nanotechnol., 2006, 17,1408–1415.10.1088/0957-4484/17/5/041Search in Google Scholar

[8] Fang, B., Nonlinear vibration analysis of double–walled carbon nanotubes based on nonlocal elasticity theory, Appl. Math. Model., 2013, 37(3), 1098–1107.10.1016/j.apm.2012.03.032Search in Google Scholar

[9] Saadatnia, Z., Esmailzadeh, E., Nonlinear harmonic vibration analysis of fluid-conveying piezoelectric-layered Nanotubes, Compos. B. Eng., 2017, 123, 193–209.10.1016/j.compositesb.2017.05.012Search in Google Scholar

[10] Askari, H., Esmailzadeh, E., Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations, Compos. B. Eng., 2017, 113, 31–43.10.1016/j.compositesb.2016.12.046Search in Google Scholar

[11] Gheshlaghi, B., Hasheminejad, S.M., Surface effects on nonlinear free vibration of nanobeams, Compos. B. Eng., 2011, 42(4), 934–937.10.1016/j.compositesb.2010.12.026Search in Google Scholar

[12] Sadeghi-Goughari, M., Jeon, S., Kwon, H., Effects of magnetic-fluid flow on structural instability of a carbon nanotube conveying nanoflow under a longitudinal magnetic field, Phys. Lett. A, 2017, 381, 35, 2898–905.10.1016/j.physleta.2017.06.054Search in Google Scholar

[13] Zhen, Y.X., Wen, S.L., Tang, Y., Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model, Physica E Low Dimens. Syst. Nanostruct., 2019, 105, 116–124.10.1016/j.physe.2018.09.005Search in Google Scholar

[14] Dai, H.L., Ceballes, S.A., Abdelkefi, A.Y.Z., Hong. Y.Z., Wang, L., Exact modes for post buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field, Appl. Math. Model, 2018, 55, 758–775.10.1016/j.apm.2017.11.025Search in Google Scholar

[15] Ebrahimi, F., Barati, M.R., Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain electric field gradient theory, Mech. Adv. Mater., 2018, 25(4), 350–359.10.1080/15376494.2016.1255830Search in Google Scholar

[16] Li, L., Yujin Hu, L., Ling, L., Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory, Physica E Low Dimens. Syst. Nanostruct., 2016, 75, 118–124.10.1016/j.physe.2015.09.028Search in Google Scholar

[17] Arani, A.G., Roudbari, M.A., Amir, S., Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations, Appl. Math. Model, 2016, 40, 2025–2038.10.1016/j.apm.2015.09.055Search in Google Scholar

[18] Zhang, D.P., Lei Y., Shen, Z.B., Vibration analysis of horn-shaped single-walled carbon nanotubes embedded in viscoelastic medium under a longitudinal magnetic field, Int. J. Mech., 2016, 118, 219–230.10.1016/j.ijmecsci.2016.09.025Search in Google Scholar

[19] Güven, U., General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity, Appl. Math. Mech-Engl., 2015, 36, 1305–1318.10.1007/s10483-015-1985-9Search in Google Scholar

[20] Wang, Q., Varadan, V.K., Quek, S.T., Small scale effect on elastic buckling of carbon Nanotubes with nonlocal continuum models, Phys. Lett. A., 2006, 357, 130–135.10.1016/j.physleta.2006.04.026Search in Google Scholar

[21] Azarboni, H.R., Magneto - thermal primary frequency response analysis of carbon nanotube considering surface effect under different boundary conditions, Compos. B. Eng., 2019, 165, 435– 441.10.1016/j.compositesb.2019.01.093Search in Google Scholar

[22] Pradhan, S.C., Phadikar, J.K., Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models, Phys. Lett. A., 2009, 373, 1062–1069.10.1016/j.physleta.2009.01.030Search in Google Scholar

[23] Semmah, A., Anwar, B.O., Mahmoud, S.R., Houari, H., Tounsi, A., Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model, Adv. Mat. Res., 2014, 3(2), 77–89.10.12989/amr.2014.3.2.077Search in Google Scholar

[24] Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A., Benzair, A., A. Tounsi, A., Sound wave propagation in armchair single walled carbon nanotubes under thermal environment, J. Appl. Phys., 2011, 110, 124322.10.1063/1.3671636Search in Google Scholar

[25] Baghdadi, H., Tounsi, A., Zidour, M., Benzair, A., Thermal Effect on Vibration Characteristics of Armchair and Zigzag Single-Walled Carbon Nanotubes Using Nonlocal Parabolic Beam Theory, Fuller. Nanotub. Car. N., 2014, 23, 266–272.10.1080/1536383X.2013.787605Search in Google Scholar

[26] Benzair, A., Tounsi, A., Besseghier, A., Heireche, A., Moulay, N., Boumia, L., The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, J. Phys. D., 2008, 41, 225404, 1–10.10.1088/0022-3727/41/22/225404Search in Google Scholar

[27] Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L., Heireche, H., Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity, Physica E Low. Dimens., 2011, 43, 1379–1386.10.1016/j.physe.2011.03.008Search in Google Scholar

[28] Zhang, Y.O., Liu, X., Liu, R. G., Thermal effect on transverse vibrations of double walled carbon nanotubes, Nanotechnol., 2007, 18, 445701-7.10.1088/0957-4484/18/44/445701Search in Google Scholar

[29] Lata, P., Kaur, I., Thermo mechanical interactions in a transversely isotropic magnato thermo-elastic solids with two temperature and rotation due to time harmonic sources, Coupled Syst. Mech., 2019, 8(3), 219–245.Search in Google Scholar

[30] Lata, P., Kaur, I., Transversely isotropic thick plate with two temperature and GN type-III in frequency domain, Coupled Syst. Mech., 2019, 8(1), 55–70.Search in Google Scholar

[31] Lata, P., Kumar, R., Sharma, N., Plane waves in anisotropic thermo-elastic medium, Steel Compos. Struct., 2016,22(3), 567– 587.10.12989/scs.2016.22.3.567Search in Google Scholar

[32] Kumar, R., Sharma, N., Lata, P., Abo-Dahab, S.M., Rayleigh waves in anisotropic magneto thermo-elastic medium, Coupled. Syst. Mech, 2017, 6(3), 317–333.Search in Google Scholar

[33] Narendar, S., Roy Mahapatra D., Gopalakrishnan, S., Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation, Int. J. Eng. Sci., 2011, 49(6), 509–522.10.1016/j.ijengsci.2011.01.002Search in Google Scholar

[34] Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, T., Mahmoud, S.R. On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity, Braz. J. Phys., 2015, 45, 225– 233.10.1007/s13538-015-0306-2Search in Google Scholar

[35] Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Hadji, L., Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory, Mech. Compos., 2014, 50(1), 95–104.10.1007/s11029-014-9396-0Search in Google Scholar

[36] Bensattalah, T., Daouadji, T.H., M. Zidour, M., Tounsi, A., Adda Bedia, E.A.A., Investigation of thermal and chirality effects on vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories,” Mech. Compos., 2016, 52(4), 555–568.10.1007/s11029-016-9606-zSearch in Google Scholar

[37] Hsu, J.C., Chang, R.P., Chang, W.J., Resonance frequency of Chiral single walled carbon nanotubes using Timoshenko beam theory, Phys. Lett. A, 2008, 373, 2757–2759.10.1016/j.physleta.2008.01.007Search in Google Scholar

[38] Aydogdu, M., Axial vibration analayisis of nanorods(carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mech. Res. Commun., 2012, 43, 34–40.10.1016/j.mechrescom.2012.02.001Search in Google Scholar

[39] Ansari, R., Gholami, R., Sahmani, S., On the dynamic stability of embedded single-walled carbon nanotubes including thermal environment effects, Sci. Iranica, 2012, 19(3), 919–925.10.1016/j.scient.2012.02.013Search in Google Scholar

[40] Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Tornabene, F., Reddy, J.N., Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations, Appl. Sci., 2019, 9(8),1580.10.3390/app9081580Search in Google Scholar

[41] Malikan, M., Nguyen, V.B., Dimitri, R., Tornabene, F., Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory, Mater. Res. Expr., 2019, 6(7), 07504.10.1088/2053-1591/ab15ffSearch in Google Scholar

[42] Nejati, M., Ghasemi-Ghalebahman, A., Soltanimaleki, A., Dimitri, R., Tornabene, F., Thermal vibration analysis of SMA hybrid composite double curved sandwich panels, Comp. Struct., 2019, 224, 111035.10.1016/j.compstruct.2019.111035Search in Google Scholar

[43] Heydarpour, Y., Malekzadeh, P., Dimitri, R., Tornabene, F., Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers, Appl. Sci., 2020, 10(4), 1397.10.3390/app10041397Search in Google Scholar

[44] Karimi, M., Khorshidi, K., Dimitri, R., Tornabene, F., Size-dependent hydroelastic vibration of FG microplates partially in contact with a fluid, Compos. Struct., 2020, 244, 112320.10.1016/j.compstruct.2020.112320Search in Google Scholar

[45] Sedighi, H.M., Ouakad, H.M., Dimitri, R., Tornabene, F., Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment, Physica Scripta, 2020, 95(6), 065204.10.1088/1402-4896/ab793fSearch in Google Scholar

[46] Wu, D.H., Chien, W.T., Chen, C.S., Chen, H.H., Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor, Sens. Actuators A Phys., 2006, 126,(1),117–121.10.1016/j.sna.2005.10.005Search in Google Scholar

[47] Li, C., Chou, T.W., Atomistic Modeling of Carbon Nanotube-based Mechanical Sensors, J. Intell. Mater. System Struct., 2006, 17, 244–254.10.1177/1045389X06058622Search in Google Scholar

[48] Barati, M.R., Shahverdi, H., Frequency analysis of nanoporous mass sensors based on a vibrating heterogeneous nanoplate and nonlocal strain gradient theory, Microsyst. Technol., 2018, 24, 1479–1494.10.1007/s00542-017-3531-5Search in Google Scholar

[49] Chowdhury, R., Adhikari, S., Mitchell, J., Vibrating carbon nanotube based bio-sensors, Physica E Low Dimens. Syst. Nanostruct., 2009, 42, 104–109.10.1016/j.physe.2009.09.007Search in Google Scholar

[50] Arda, M., Aydogdu, M., Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass, Mech. Based Des. Struct. Mach., 2020, 1–17.10.1080/15397734.2020.1728548Search in Google Scholar

[51] Liu, H., Lyu, Z., Modeling of novel nanoscale mass sensor made of smart FG magneto-electro-elastic nanofilm integrated with graphene layers, Thin-Walled Struct., 2020,151, 106749.10.1016/j.tws.2020.106749Search in Google Scholar

[52] Lee, H.L., Hsu, J.C., Chang, W.J., Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory, Nanoscale. Res. Lett. 2010, 5, 1774–1778.Search in Google Scholar

[53] Nematollahi, M.A., Jamali, B., Hosseini, M., Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis, Acta Mech., 2019, 231, 683–676.10.1007/s00707-019-02554-0Search in Google Scholar

[54] Aydogdu, M., Filiz, S., Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity, Physica E, 2011,43,1229–1234.10.1016/j.physe.2011.02.006Search in Google Scholar

[55] Tokio, Y., Recent development of carbon nanotube, Synth. Met., 1995, 70, 1511–1518.10.1016/0379-6779(94)02939-VSearch in Google Scholar

[56] Wu, Y., Zhang, X., Leung, A.Y.T., Zhong, W., An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes, Thin-Walled. Struc., 2006, 44, 667–676.10.1016/j.tws.2006.05.003Search in Google Scholar

[57] Lei, X.W., Natsuki, T., Shi, J.X., Ni, Q.Q., Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model, Compos. B. Eng., 2012, 43, 64–69.10.1016/j.compositesb.2011.04.032Search in Google Scholar

[58] Yan, Z., Jiang, L., The Vibrational and Buckling Behaviors of Piezoelectric Nanobeams with Surface Effects, Nanotechnol., 2011, 22(24), 245703.10.1088/0957-4484/22/24/245703Search in Google Scholar PubMed

[59] Barati, M.R., Investigating nonlinear vibration of closed circuit flexoelectric nanobeams with surface effects via hamiltonian method, Microsyst. Technol., 2018, 24, 1841–1851.10.1007/s00542-017-3549-8Search in Google Scholar

[60] Narender, S., Gopalakrishnan, S., Ultrasonic wave charenterstics of a nanorods via nonlocal strain gradient models, J. Appl .Phys., 2010,107,084312.10.1063/1.3345869Search in Google Scholar

[61] Lee, L. H., Chang, W. J., Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium, Physica E Low Dimens. Syst. Nanostruc., 2009, 41, 529–53.10.1016/j.physe.2008.10.002Search in Google Scholar

[62] Basutkar, R. Sidhardh, S., Ray, M.C., Static analysis of flexoelectric nanobeams incorporating surface effects using element free Galerkin method, Eur. J. Mech. A-Solid., 2019, 76,13–24.10.1016/j.euromechsol.2019.02.013Search in Google Scholar

Received: 2020-07-09
Accepted: 2020-08-23
Published Online: 2020-10-07

© 2020 Rajendran Selvamani et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/cls-2020-0012/html
Scroll to top button