Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 15, 2015

Bioinformatics-based molecular classification of Arthrobacter plasmids

  • Marius Mihăşan EMAIL logo

Abstract

The omnipresence of Arthrobacter species in polluted and toxic soils indicates their great potential in environmental biotechnologies, but practical applications of these bacteria are scarce mainly due to the availability of useful genetic engineering tools. Although many fully sequenced Arthrobacter genomes have been deposited in GenBank, little is known about the biology of their plasmids, especially the core functions: replication and partition. In this study the available Arthrobacter plasmid sequences were analyzed in order to identify their putative replication origin. At least the oris from the cryptic plasmids pXZ10142, pCG1, and pBL1 appear to work in this genus. Based on ParA homolog sequences, the Arthrobacter specific plasmids were classified into 4 clades. Iteron-like sequences were identified on most of the plasmids, indicating the position of the putative Arthrobacter specific oris. Although attempts were made to identify the core gene set required for plasmid replication in this genus, it was not possible. The plasmid proteomes showed a rather low similarity.

References

1. Busse, H.-J. and Wieser, M. in The Prokaryotes - Actinobacteria (Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E. & Thompson, F., Eds.) Springer Berlin Heidelberg, 2014, 945-960. DOI:10.1007/978-3-642-30138-4.10.1007/978-3-642-30138-4Search in Google Scholar

2. Stanislauskiene, R., Gasparaviciute, R., Vaitekunas, J., Meskiene, R., Rutkiene, R., Casaite, V. and Meskys, R. Construction of Escherichia coli- Arthrobacter-Rhodococcus shuttle vectors based on a cryptic plasmid from Arthrobacter rhombi and investigation of their application for functional screening. FEMS Microbiol. Lett. 327 (2012) 78-86.Search in Google Scholar

3. Boylen, C.W. Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. J. Bacteriol. 113 (1973) 33-37.Search in Google Scholar

4. Fredrickson, J.K., Zachara, J.M., Balkwill, D.L., Kennedy, D., Li, S.W., Kostandarithes, H.M., Daly, M.J., Romine, M.F. and Brockman, F.J. Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, Washington state. Appl. Environ. Microbiol. 70 (2004) 4230-4241.10.1128/AEM.70.7.4230-4241.2004Search in Google Scholar PubMed PubMed Central

5. Ganzert, L., Bajerski, F., Mangelsdorf, K., Lipski, A. and Wagner, D. Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from Antarctic soil. Int. J. Syst. Evol. Microbiol. 61 (2011) 979-984.Search in Google Scholar

6. Kallimanis, A., Kavakiotis, K., Perisynakis, A., Spröer, C., Pukall, R., Drainas, C. and Koukkou, A.I. Arthrobacter phenanthrenivorans sp. nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp. strain Sphe3. Int. J. Syst. Evol. Microbiol. 59 (2009) 275-279.Search in Google Scholar

7. Westerberg, K., Elvang, M.A., Stackebrandt, E. and Jansson, K.J. Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int. J. Syst. Evol. Microbiol. 50 (2000) 2083-2092.Search in Google Scholar

8. Borodina, E., Donovan, P.K., Schumann, P., Rainey, A.F., Ward-Rainey, L.N. and Wood, P.A. Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch. Microbiol. 177 (2002) 173-183.10.1007/s00203-001-0373-3Search in Google Scholar PubMed

9. Sagarkar, S., Bhardwaj, P., Yadav, T.C., Qureshi, A., Khardenavis, A., Purohit, H.J. and Kapley, A. Draft genome sequence of atrazine-utilizing bacteria isolated from Indian agricultural soil. Genome Announc. 2 (2014) pii: e01149-13. doi: 10.1128/genomeA.01149-13.10.1128/genomeA.01149-13Search in Google Scholar PubMed PubMed Central

10. Shaw, P.C. and Hartley, B.S. A host-vector system for Arthrobacter species. J. Gen. Microbiol. 134 (1988) 903-911.Search in Google Scholar

11. Sandu, C., Chiribau, C.-B., Sachelaru, P. and Brandsch, R. Plasmids for nicotine-dependent and -independent gene expression in Arthrobacter nicotinovorans and other Arthrobacter species. Appl. Environ. Microbiol. 71 (2005) 8920-8924.Search in Google Scholar

12. Morikawa, M., Daido, H., Pongpobpibool, S. and Imanaka, T. Construction of a new host-vector system in Arthrobacter sp. and cloning of the lipase gene. Appl. Microbiol. Biotechnol. 42 (1994) 300-303.Search in Google Scholar

13. Miteva, V., Lantz, S. and Brenchley, J. Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients. Extremophiles 12 (2008) 441-449.Search in Google Scholar

14. Igloi, G.L. and Brandsch, R. Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1- dependent nicotine uptake system. J. Bacteriol. 185 (2003) 1976-1986.Search in Google Scholar

15. Niewerth, H., Schuldes, J., Parschat, K., Kiefer, P., Vorholt, J.A., Daniel, R. and Fetzner, S. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics 13 (2012) 534.Search in Google Scholar

16. Mihasan, M., Stefan, M., Hritcu, L., Artenie, V. and Brandsch, R. Evidence of a plasmid-encoded oxidative xylose-catabolic pathway in Arthrobacter nicotinovorans pAO1. Res. Microbiol. 164 (2013) 22-30.Search in Google Scholar

17. Vesth, T., Lagesen, K., Acar, Ö. and Ussery, D. CMG-biotools, a free workbench for basic comparative microbial genomics. PLoS One 8 (2013) e60120.10.1371/journal.pone.0060120Search in Google Scholar PubMed PubMed Central

18. Thompson, J.D., Higgins, D.G. and Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673-4680.Search in Google Scholar

19. Jones, D.T., Taylor, W.R. and Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8 (1992) 275-282.Search in Google Scholar

20. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30 (2013) 2725-2729.Search in Google Scholar

21. Funnell, B.E. and Slavcev, R.A. in Plasmid Biology (Funnell, B.E. & Phillips, G.J., Eds), 2004, 81-103.10.1128/9781555817732Search in Google Scholar

22. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. and Drummond, A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (2012) 1647-1649.Search in Google Scholar

23. Schumacher, M.A. Structural biology of plasmid segregation proteins. Curr. Opin. Struct. Biol. 17 (2007) 103-109.10.1016/j.sbi.2006.11.005Search in Google Scholar PubMed

24. Salje, J. Plasmid segregation: how to urvive as an extra piece of DNA. Crit. Rev. Biochem. Mol. Biol. 45 (2010) 296-317.10.3109/10409238.2010.494657Search in Google Scholar PubMed

25. Bouet, J.-Y., Nordström, K. and Lane, D. Plasmid partition and incompatibility--the focus shifts. Mol. Microbiol. 65 (2007) 1405-1414.Search in Google Scholar

26. Jerke, K., Nakatsu, C.H., Beasley, F. and Konopka, A. Comparative analysis of eight Arthrobacter plasmids. Plasmid 59 (2008) 73-85.Search in Google Scholar

27. Del Solar, G., Giraldo, R., Ruiz-Echevarría, M.J., Espinosa, M. and Díaz- Orejas, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62 (1998) 434-464.Search in Google Scholar

28. Trautwetter, A. and Blanco, C. Structural organization of the Corynebacterium glutamicum plasmid pCG100. J. Gen. Microbiol. 137 (1991) 2093-2101.Search in Google Scholar

29. Tauch, A. in Handbook of Corynebacterium glutamicum (Eggeling, L. & Mott, M., Eds) CRC Press, 2005, 57-75.10.1201/9781420039696.ch4Search in Google Scholar

30. Patek, M. and Nesvera, J. in Corynebacterium glutamicum (Yukawa, H. & Inui, M., Eds) 23 ,Springer Berlin Heidelberg, 2013, 51-88.Search in Google Scholar

31. Santamaría, R.I., Martin, J.F. and Gil, J.A. Identification of a promoter sequence in the plasmid pUL340 of Brevibacterium lactofermentum and construction of new cloning vectors for corynebacteria containing two selectable markers. Gene 56 (1987) 199-208.Search in Google Scholar

32. Miwa, K., Matsui, H., Terabe, M., Nakamori, S., Sano, K. and Momose, H. Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48 (1984) 2901-2903.Search in Google Scholar

33. Deb, J. and Nath, N. Plasmids of corynebacteria. FEMS Microbiol. Lett. 175 (1999) 11-20.10.1111/j.1574-6968.1999.tb13596.xSearch in Google Scholar PubMed

34. Gao, F. Recent advances in the identification of replication origins based on the Z-curve method. Curr. Genomics 15 (2014) 104-112.Search in Google Scholar

35. Rigden, D.J., Jedrzejas, M.J. and Galperin, M.Y. Amidase domains from bacterial and phage autolysins define a family of gamma-D,L-glutamatespecific amidohydrolases. Trends Biochem. Sci. 28 (2003) 230-234.10.1016/S0968-0004(03)00062-8Search in Google Scholar

36. Bateman, A. and Rawlings, N.D. The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem. Sci. 28 (2003) 234-237.Search in Google Scholar

37. Kuenne, C., Voget, S., Pischimarov, J., Oehm, S., Goesmann, A., Daniel, R., Hain, T. and Chakraborty, T. Comparative analysis of plasmids in the genus Listeria. PLoS One 5 (2010) 7.Search in Google Scholar

38. Rawlings, D.E. The evolution of pTF-FC2 and pTC-F14, two related plasmids of the IncQ-family. Plasmid 53 (2005) 137-147. Search in Google Scholar

39. Kim, J.-G., Choi, S., Oh, J., Moon, J.S. and Hwang, I. Comparative analysis of three indigenous plasmids from Xanthomonas axonopodis pv. glycines. Plasmid 56 (2006) 79-87.Search in Google Scholar

40. Leret, V., Trautwetter, A., Rincé, A. and Blanco, C. pBLA8, from Brevibacterium linens, belongs to a gram-positive subfamily of ColE2- related plasmids. Microbiology 144 (1998) 2827-2836.Search in Google Scholar

41. Kallimanis, A., Labutti, K.M., Lapidus, A., Clum, A., Lykidis, A., Mavromatis, K., Pagani, I., Liolios, K., Ivanova, N., Goodwin, L., Pitluck, S., Chen, A., Palaniappan, K., Markowitz, V., Bristow, J., Velentzas, A.D., Perisynakis, A., Ouzounis, C.C., Kyrpides, N.C., Koukkou, A.I. and Drainas, C. Complete genome sequence of Arthrobacter phenanthrenivorans type strain (Sphe3). Stand. Genomic Sci. 4 (2011) 123-130.Search in Google Scholar

42. Parschat, K., Overhage, J., Strittmatter, A.W., Henne, A., Gottschalk, G. and Fetzner, S. Complete nucleotide sequence of the 113-kilobase linear catabolic plasmid pAL1 of Arthrobacter nitroguajacolicus Rü61a and transcriptional analysis of genes involved in quinaldine degradation. J. Bacteriol. 189 (2007) 3855-3867.Search in Google Scholar

43. Monnet, C., Loux, V., Gibrat, J.-F., Spinnler, E., Barbe, V., Vacherie, B., Gavory, F., Gourbeyre, E., Siguier, P., Chandler, M., Elleuch, R., Irlinger, F. and Vallaeys, T. The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS One 5 (2010) e15489.10.1371/journal.pone.0015489Search in Google Scholar PubMed PubMed Central

44. Mongodin, E.F., Shapir, N., Daugherty, S.C., DeBoy, R.T., Emerson, J.B., Shvartzbeyn, A., Radune, D., Vamathevan, J., Riggs, F., Grinberg, V., Khouri, H., Wackett, L.P., Nelson, K.E. and Sadowsky, M.J. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2 (2006) e214. 10.1371/journal.pgen.0020214Search in Google Scholar PubMed PubMed Central

Received: 2015-2-9
Accepted: 2015-7-14
Published Online: 2015-10-15
Published in Print: 2015-12-1

© 2015

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.1515/cmble-2015-0036/html
Scroll to top button