Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 7, 2019

Cuspidal ℓ-modular representations of p-adic classical groups

  • Robert Kurinczuk EMAIL logo and Shaun Stevens

Abstract

For a classical group over a non-archimedean local field of odd residual characteristic p, we construct all cuspidal representations over an arbitrary algebraically closed field of characteristic different from p, as representations induced from a cuspidal type. We also give a fundamental step towards the classification of cuspidal representations, identifying when certain cuspidal types induce to equivalent representations; this result is new even in the case of complex representations. Finally, we prove that the representations induced from more general types are quasi-projective, a crucial tool for extending the results here to arbitrary irreducible representations.

Award Identifier / Grant number: EP/H00534X/1

Funding statement: This work was supported by the Engineering and Physical Sciences Research Council (EP/H00534X/1).

Acknowledgements

We thank the referees for their very careful reading, corrections and useful expositional suggestions which have greatly improved the paper.

References

[1] C. Blondel, Quelques propriétés des paires couvrantes, Math. Ann. 331 (2005), no. 2, 243–257. 10.1007/s00208-004-0579-1Search in Google Scholar

[2] P. Broussous and B. Lemaire, Building of GL(m,D) and centralizers, Transform. Groups 7 (2002), no. 1, 15–50. 10.1007/BF01253463Search in Google Scholar

[3] P. Broussous, V. Sécherre and S. Stevens, Smooth representations of GLm(D) V: Endo-classes, Doc. Math. 17 (2012), 23–77. 10.4171/dm/360Search in Google Scholar

[4] C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Ann. of Math. Stud. 129, Princeton University Press, Princeton 1993. 10.1515/9781400882496Search in Google Scholar

[5] C. J. Bushnell and P. C. Kutzko, Smooth representations of reductive p-adic groups: Structure theory via types, Proc. Lond. Math. Soc. (3) 77 (1998), no. 3, 582–634. 10.1112/S0024611598000574Search in Google Scholar

[6] C. J. Bushnell and P. C. Kutzko, Semisimple types in GLn, Compos. Math. 119 (1999), no. 1, 53–97. 10.1023/A:1001773929735Search in Google Scholar

[7] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. Éc. Norm. Supér. (4) 17 (1984), no. 2, 191–225. 10.24033/asens.1470Search in Google Scholar

[8] G. Chinello, Blocks of the category of smooth -modular representations of GL(n,F) and its inner forms: Reduction to level 0, Algebra Number Theory 12 (2018), no. 7, 1675–1713. 10.2140/ant.2018.12.1675Search in Google Scholar

[9] J.-F. Dat, Finitude pour les représentations lisses de groupes p-adiques, J. Inst. Math. Jussieu 8 (2009), no. 2, 261–333. 10.1017/S1474748008000054Search in Google Scholar

[10] J.-F. Dat, Equivalences of tame blocks for p-adic linear groups, Math. Ann. 371 (2018), no. 1–2, 565–613. 10.1007/s00208-018-1648-1Search in Google Scholar

[11] M. Geck, G. Hiss and G. Malle, Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type, Math. Z. 221 (1996), no. 3, 353–386. 10.1007/PL00004253Search in Google Scholar

[12] M. Geck and N. Jacon, Representations of Hecke algebras at roots of unity, Algebr. Appl. 15, Springer, London 2011. 10.1007/978-0-85729-716-7Search in Google Scholar

[13] G. Henniart and V. Sécherre, Types et contragrédientes, Canad. J. Math. 66 (2014), no. 6, 1287–1304. 10.4153/CJM-2013-032-7Search in Google Scholar

[14] R. B. Howlett and G. I. Lehrer, Induced cuspidal representations and generalised Hecke rings, Invent. Math. 58 (1980), no. 1, 37–64. 10.1007/BF01402273Search in Google Scholar

[15] R. J. Kurinczuk, -modular representations of unramified p-adic U(2,1), Algebra Number Theory 8 (2014), no. 8, 1801–1838. 10.2140/ant.2014.8.1801Search in Google Scholar

[16] R. Kurinczuk, D. Skodlerack and S. Stevens, Endo-classes for p-adic classical groups, preprint (2016), https://arxiv.org/abs/1611.02667. Search in Google Scholar

[17] B. Lemaire, Comparison of lattice filtrations and Moy–Prasad filtrations for classical groups, J. Lie Theory 19 (2009), no. 1, 29–54. Search in Google Scholar

[18] A. Mínguez and V. Sécherre, Types modulo pour les formes intérieures de GLn sur un corps local non archimédien, Proc. Lond. Math. Soc. (3) 109 (2014), no. 4, 823–891. 10.1112/plms/pdu020Search in Google Scholar

[19] M. Miyauchi and S. Stevens, Semisimple types for p-adic classical groups, Math. Ann. 358 (2014), no. 1–2, 257–288. 10.1007/s00208-013-0953-ySearch in Google Scholar

[20] L. Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), no. 1, 1–54. 10.1007/BF01232662Search in Google Scholar

[21] V. Sécherre and S. Stevens, Smooth representations of GLm(D) VI: Semisimple types, Int. Math. Res. Not. IMRN 2012 (2012), no. 13, 2994–3039. 10.1093/imrn/rnr122Search in Google Scholar

[22] D. Skodlerack and S. Stevens, Intertwining semisimple characters for p-adic classical groups, Nagoya Math. J. (2018), 10.1017/nmj.2018.23. 10.1017/nmj.2018.23Search in Google Scholar

[23] S. Stevens, Types and representations of p-adic symplectic groups, Ph.D. thesis, King’s College London, 1998, http://www.uea.ac.uk/~h008/research/thesis.pdf. Search in Google Scholar

[24] S. Stevens, Double coset decompositions and intertwining, Manuscripta Math. 106 (2001), no. 3, 349–364. 10.1007/PL00005887Search in Google Scholar

[25] S. Stevens, Intertwining and supercuspidal types for p-adic classical groups, Proc. Lond. Math. Soc. (3) 83 (2001), no. 1, 120–140. 10.1112/plms/83.1.120Search in Google Scholar

[26] S. Stevens, Semisimple characters for p-adic classical groups, Duke Math. J. 127 (2005), no. 1, 123–173. 10.1215/S0012-7094-04-12714-9Search in Google Scholar

[27] S. Stevens, The supercuspidal representations of p-adic classical groups, Invent. Math. 172 (2008), no. 2, 289–352. 10.1007/s00222-007-0099-1Search in Google Scholar

[28] M.-F. Vignéras, Représentations l-modulaires d’un groupe réductif p-adique avec lp, Progress in Mathematics 137, Birkhäuser, Boston 1996. Search in Google Scholar

[29] M.-F. Vignéras, Induced R-representations of p-adic reductive groups, Selecta Math. (N.S.) 4 (1998), no. 4, 549–623. 10.1007/s000290050040Search in Google Scholar

[30] M.-F. Vignéras, Irreducible modular representations of a reductive p-adic group and simple modules for Hecke algebras, European Congress of Mathematics. Vol. I (Barcelona 2000), Progr. Math. 201, Birkhäuser, Basel (2001), 117–133. 10.1007/978-3-0348-8268-2_7Search in Google Scholar

[31] M.-F. Vignéras, La conjecture de Langlands locale pour GL(n,F) modulo l quand lp, l>n, Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), no. 6, 789–816. 10.1016/S0012-9593(01)01077-1Search in Google Scholar

[32] M.-F. Vignéras, Schur algebras of reductive p-adic groups. I, Duke Math. J. 116 (2003), no. 1, 35–75. 10.1215/S0012-7094-03-11612-9Search in Google Scholar

Received: 2016-10-03
Revised: 2018-10-24
Published Online: 2019-05-07
Published in Print: 2020-07-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/crelle-2019-0009/html
Scroll to top button