Skip to main content
Log in

Strong maximum principle for fractional diffusion equations and an application to an inverse source problem

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The strong maximum principle is a remarkable property of parabolic equations, which is expected to be partly inherited by fractional diffusion equations. Based on the corresponding weak maximum principle, in this paper we establish a strong maximum principle for time-fractional diffusion equations with Caputo derivatives, which is slightly weaker than that for the parabolic case. As a direct application, we give a uniqueness result for a related inverse source problem on the determination of the temporal component of the inhomogeneous term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.E. Adams, L.W. Gelhar, Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis. Water Resources Res. 28, No 12, (1992), 3293–3307.

    Article  Google Scholar 

  2. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).

    MATH  Google Scholar 

  3. M. Al-Refai, Y. Luchko, Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 17, No 2, (2014), 483–498; 10.2478/s13540-014-0181-5; http://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml

    Article  MathSciNet  Google Scholar 

  4. J.R. Cannon, S.P. Esteva, An inverse problem for the heat equation. Inverse Problems. 2, No 4, (1986), 395–403.

    Article  MathSciNet  Google Scholar 

  5. R. Courant, D. Hilbert, Methods of Mathematical Physics. Interscience, New York (1953).

    MATH  Google Scholar 

  6. L.C. Evans, Partial Differential Equations. 2nd ed., American Mathematical Society, Providence - RI (2010).

    MATH  Google Scholar 

  7. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001).

    Book  Google Scholar 

  8. M. Ginoa, S. Cerbelli, H.E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials. Phys. A. 191, No 1, (1992), 449–453.

    Article  Google Scholar 

  9. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014).

    Book  Google Scholar 

  10. R. Gorenflo, Y. Luchko, M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18, No 3, (2015), 799–820; 10.1515/fca-2015-0048; http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml

    Article  MathSciNet  Google Scholar 

  11. Y. Hatano, N. Hatano, Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resources Res. 34, No 5, (1998), 1027–1033.

    Article  Google Scholar 

  12. B. Jin, R. Lazarov, J. Pasciak, Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, No 2, (2015), 561–582.

    Article  MathSciNet  Google Scholar 

  13. B. Jin, R. Lazarov, Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, No 1, (2013), 445–466.

    Article  MathSciNet  Google Scholar 

  14. B. Jin, W. Rundell, A tutorial on inverse problems for anomalous diffusion processes. Inverse Problems. 31, No 3, (2015), 035003.

    Article  MathSciNet  Google Scholar 

  15. F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, No 1, (2007), 12–20.

    MathSciNet  MATH  Google Scholar 

  16. Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, No 1, (2009), 218–223.

    Article  MathSciNet  Google Scholar 

  17. Y. Luchko, Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59, No 5, (2010), 1766–1772.

    Article  MathSciNet  Google Scholar 

  18. Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24, No 2, (1999), 207–233.

    MathSciNet  MATH  Google Scholar 

  19. Y. Luchko, W. Rundell, M. Yamamoto, L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation. Inverse Problems. 29, No 6, (2013), 065019.

    Article  MathSciNet  Google Scholar 

  20. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, No 1, (2004), 65–77.

    Article  MathSciNet  Google Scholar 

  21. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1, (2000), 1–77.

    Article  MathSciNet  Google Scholar 

  22. R.R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B. 133, No 1, (1986), 425–430.

    Article  Google Scholar 

  23. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  24. W. Rundell, X. Xu, L. Zuo, The determination of an unknown boundary condition in a fractional diffusion equation. Appl. Anal. 92, No 7, (2013), 1511–1526.

    Article  MathSciNet  Google Scholar 

  25. S. Saitoh, V.K. Tuan, M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems. J. Inequal. Pure Appl. Math. 3, No 5, (2002), 1–11.

    MathSciNet  MATH  Google Scholar 

  26. S. Saitoh, V.K. Tuan, M. Yamamoto, Convolution inequalities and applications. J. Inequal. Pure Appl. Math. 4, No 3, (2003), 1–8.

    MathSciNet  MATH  Google Scholar 

  27. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, No 1, (2011), 426–447.

    Article  MathSciNet  Google Scholar 

  28. E.C. Titchmarsh, The zeros of certain integral functions. Proc. London Math. Soc. 2, No 1, (1926), 283–302.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yikan Liu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Rundell, W. & Yamamoto, M. Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. FCAA 19, 888–906 (2016). https://doi.org/10.1515/fca-2016-0048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0048

MSC 2010

Key Words and Phrases

Navigation