Skip to main content
Log in

On the fractional probabilistic Taylor's and mean value theorems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In order to develop certain fractional probabilistic analogues of Taylor’s theorem and mean value theorem, we introduce the nth-order fractional equilibrium distribution in terms of the Weyl fractional integral and investigate its main properties. Specifically, we show a characterization result by which the nth-order fractional equilibrium distribution is identical to the starting distribution if and only if it is exponential. The nth-order fractional equilibrium density is then used to prove a fractional probabilistic Taylor’s theorem based on derivatives of Riemann-Liouville type. A fractional analogue of the probabilistic mean value theorem is thus developed for pairs of nonnegative random variables ordered according to the survival bounded stochastic order. We also provide some related results, both involving the normalized moments and a fractional extension of the variance, and a formula of interest to actuarial science. In conclusion, we discuss the probabilistic Taylor’s theorem based on fractional Caputo derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cheng, J.S. Pai, The maintenance properties of nth stop-loss order In: Proc. of the 30th International ASTIN Colloquium/9th International AFIR Colloquium (1999), 95–118.

    Google Scholar 

  2. A. Di Crescenzo, A probabilistic analogue of the mean value theorem and its applications to reliability theory. J. Appl. Probab. 36, No 3 (1999), 706–719 doi: 10.1239/jap/1032374628.

    Article  MathSciNet  Google Scholar 

  3. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Heidelberg (2014) doi:10.1007/978–3-662–43930-2.

    Book  Google Scholar 

  4. W.L. Harkness, R. Shantaram, Convergence of a sequence of transformations of distribution functions. Pacific J. Math. 31, No, 2 (1969), 403–415.

    Article  MathSciNet  Google Scholar 

  5. E. Hewitt, K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. 3rd printing. Graduate Texts in Mathematics No., 25, Springer-Verlag, New York-Heidelberg (1975).

    MATH  Google Scholar 

  6. P. Guo, C. Li, G. Chen, On the fractional mean-value theorem. Int. J. Bifurcation Chaos. 22 (2012) Article 1250104; doi: 10.1142/S0218127412501040.

  7. S.G. Kellison, R.L. London, Risk Models and Their Estimation.. ACTEX Publications, Winsted, CT (2011).

    Google Scholar 

  8. S.A. Klugman, H.H. Panjer, G.E. Willmot, Loss Models: From Data to Decisions. 4th edition., Wiley, Hoboken, NJ (2012).

    MATH  Google Scholar 

  9. G.D. Lin, On a probabilistic generalization of Taylor’s theorem. Statist. Probab. Lett. 19, No. 3 (1994), 239–243 doi:10.1016/0167–7152(94)90110–4.

    Article  MathSciNet  Google Scholar 

  10. A.W. Marshall, I. Olkin, Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. Springer-Verlag, New York (2007) doi: 10.1007/978–0-387–68477-2.

    MATH  Google Scholar 

  11. W.A. Massey, W. Whitt, A probabilistic generalization of Taylor’s theorem. Statist. Probab. Lett. 16, No 1 (1993), 51–54 doi:10.1016/0167–7152(93)90122-Y.

    Article  MathSciNet  Google Scholar 

  12. T. Mikosch, G. Samorodnitsky, L. Tafakori, Fractional moments of solutions to stochastic recurrence equations. J. Appl. Probab. 50, No 4 (2013), 969–982 doi: 10.1239/jap/1389370094.

    Article  MathSciNet  Google Scholar 

  13. Z.M. Odibat, N.T. Shawagfeh, Generalized Taylor’s formula. Appl. Math. Comput. 186, No 1 (2007), 286–293 doi:10.1016/j.amc.2006.07.102.

    MathSciNet  MATH  Google Scholar 

  14. S. Ortobelli, S. Rachev, H. Shalit, F.J. Fabozzi, Orderings and risk probability functionals in portfolio theory. Probab. Math. Statist. 28, No. 2 (2008), 203–234.

    MathSciNet  MATH  Google Scholar 

  15. J.E. Pečarić, I. Perić, H.M. Srivastava, A family of the Cauchy type mean-value theorems. J. Math. Anal. Appl. 306, No. 2 (2005), 730–739 doi:10.1016/j.jmaa.2004.10.018.

    Article  MathSciNet  Google Scholar 

  16. M. Shaked, J.G. Shanthikumar, Stochastic Orders. Springer, New York (2007) doi:10.1007/978–0-387–34675-5.

    Book  Google Scholar 

  17. D. Stoyan, Comparison Methods for Queues and Other Stochastic Models. Wiley Chichester (1983).

    MATH  Google Scholar 

  18. J.J. Trujillo, M. Rivero, B. Bonilla, On a Riemann-Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 231, No 1 (1999), 255–265 doi:10.1006/jmaa.1998.6224.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Crescenzo, A., Meoli, A. On the fractional probabilistic Taylor's and mean value theorems. FCAA 19, 921–939 (2016). https://doi.org/10.1515/fca-2016-0050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0050

MSC 2010

Key Words and Phrases

Navigation