Skip to main content
Log in

Ten Equivalent Definitions of the Fractional Laplace Operator

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This article discusses several definitions of the fractional Laplace operator L = — (—Δ)α/2 in Rd, also known as the Riesz fractional derivative operator; here α ∈ (0,2) and d ≥ 1. This is a core example of a nonlocal pseudo-differential operator, appearing in various areas of theoretical and applied mathematics. As an operator on Lebesgue spaces ℒp (with p ∈ [1,∞)), on the space 𝒞0 of continuous functions vanishing at infinity and on the space 𝒞bu of bounded uniformly continuous functions, L can be defined, among others, as a singular integral operator, as the generator of an appropriate semigroup of operators, by Bochner’s subordination, or using harmonic extensions. It is relatively easy to see that all these definitions agree on the space of appropriately smooth functions. We collect and extend known results in order to prove that in fact all these definitions are completely equivalent: on each of the above function spaces, the corresponding operators have a common domain and they coincide on that common domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Bañuelos T. Kulczycki, The Cauchy process and the Steklov problem. J. Funct. Anal. 211 No 2 (2004), 355–423

    MathSciNet  MATH  Google Scholar 

  2. R. Bañuelos T. Kulczycki, Spectral gap for the Cauchy process on convex symmetric domains. Comm. Partial Diff. Equations. 31 (2006), 1841–1878

    MathSciNet  MATH  Google Scholar 

  3. J. Bertoin, Lévy ProcessesCambridge University Press Melbourne-New York (1998

    MATH  Google Scholar 

  4. J. Bliedtner W. Hansen, Potential theory, an analytic and probabilistic approach to balayageSpringer-Verlag Berlin-Heidelberg-New York-Tokyo (1986

    MATH  Google Scholar 

  5. R.M. Blumenthal R. K. Getoor D. B. Ray, On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99 (1961), 540–554

    MathSciNet  MATH  Google Scholar 

  6. K. Bogdan K. Burdzy Z.-Q. Chen, Censored stable processes. Probab. Theory Related Fields. 127 No 1 (2003), 89–152

    MathSciNet  MATH  Google Scholar 

  7. K. Bogdan T. Byczkowski, Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133 No 1 (1999), 53–92

    MathSciNet  MATH  Google Scholar 

  8. K. Bogdan T. Byczkowski T. Kulczycki M. Ryznar R. Song Z. Vondraček, Potential Analysis of Stable Processes and its Extensions. Lecture Notes in Mathematics, (1980), Springer-Verlag Berlin-Heidelberg (2009)

    Google Scholar 

  9. K. Bogdan T. Kulczycki M. Kwaśnicki, Estimates and structure of αharmonic functions. Probab. Theory Related Fields. 140 No 3-4 (2008), 345–381

    MathSciNet  MATH  Google Scholar 

  10. K. Bogdan T. Kumagai M. Kwaśnicki, Boundary Harnack inequality for Markov processes with jumps. Trans. Amer. Math. Soc. 367 No 1 (2015), 477–517

    MathSciNet  MATH  Google Scholar 

  11. K. Bogdan T. Zak, On Kelvin transformation. J. Theor. Prob. 19 No 1 (2006), 89–120

    MathSciNet  MATH  Google Scholar 

  12. C. Bucur E. Valdinoci, Non-local diffusion and applications. Lecture Notes of the Unione Matematica Italiana. 20, Springer (2016

  13. L. Caffarelli L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations. 32 No 7 (2007), 1245–1260

    MathSciNet  MATH  Google Scholar 

  14. L. Caffarelli S. Salsa L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Inventiones Math. 171 No 2 (2008), 425–461

    MathSciNet  MATH  Google Scholar 

  15. A. Chechkin R. Metzler J. Klafter V. Conchar, Introduction to the Theory of Lévy Flights. In R. Klages G. Radons I.M. Sokolov Anomalous Transport: Foundations and Applications Wiley-VCH Weinheim (2008

    Google Scholar 

  16. R. D. DeBlassie, The first exit time of a two-dimensional symmetric stable process from a wedge. Ann. Probab. 18 (1990), 1034–1070

    MathSciNet  MATH  Google Scholar 

  17. R. D. DeBlassie, Higher order PDE’s and symmetric stable processes. Probab. Theory Related Fields. 129 (2004), 495–536

    MathSciNet  MATH  Google Scholar 

  18. R. D. DeBlassie P. J. Méndez-Hernández, α-continuity properties of the symmetric α-stable process. Trans. Amer. Math. Soc. 359 (2007), 2343–2359

    MathSciNet  MATH  Google Scholar 

  19. E. Di Nezza G. Palatucci E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 No 5 (2012), 521–573

    MathSciNet  MATH  Google Scholar 

  20. M. Dunford J. T. Schwartz, Linear Operators. General theory. Inter-science Publ New York (1953

    Google Scholar 

  21. B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15 No 4 (2012), 536–55510.2478/sl3540-012-0038-8https://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xml

    MathSciNet  MATH  Google Scholar 

  22. B. Dyda A. Kuznetsov M. Kwaśnicki, Fractional Laplace operator and Meijer G-function. Constr. Approx First Online 20, April 2016, 22 pp.; 10.1007/s00365-016-9336-4

    Google Scholar 

  23. E. B. Dynkin, Markov processes. I and II, Springer-Verlag Berlin-Götingen-Heidelberg (1965

  24. D. W. Fox J. R. Kuttler, Sloshing frequencies. Z. Angew. Math. Phys. 34 (1983), 668–696

    MathSciNet  MATH  Google Scholar 

  25. K. O. Friedrichs H. Lewy, The dock problem. Commun. Pure Appl. Math. 1 (1948), 135–148

    MathSciNet  MATH  Google Scholar 

  26. M. Fukushima Y. Oshima M. Takeda, Dirichlet Forms and Symmetric Markov ProcessesDe Gruyter Berlin-New York (2011

    MATH  Google Scholar 

  27. J. E. Gale P. J. Miana P. R. Stinga, Extension problem and fractional operators: semigroups and wave equations. J. Evol. Equations. 13 (2013), 343–368

    MathSciNet  MATH  Google Scholar 

  28. R. K. Getoor, First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc. 101 No 1 (1961), 75–90

    MathSciNet  MATH  Google Scholar 

  29. I. S. Gradshteyn I. M. Ryzhik, Table of Integrals, Series and Products Academic Press (2007

    MATH  Google Scholar 

  30. Z. Hao Y. Jiao, Fractional integral on martingale hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18 No 5 (2015), 1128-114510.1515/fca-2015-0065

    Google Scholar 

  31. R. Hilfer, Experimental implications of Bochner-Lévy-Riesz diffusion. Fract. Calc. Appl. Anal. 18 No 2 (2015), 333–34110.1515/fca-2015-0022https://www.degruyter.eom/view/j/fca.2015.18.issue-5/issue-files/fca.2015.18.issue-5.xml

    MathSciNet  MATH  Google Scholar 

  32. R. L. Holford, Short surface waves in the presence of a finite dock. I, II. Proc. Cambridge Philos. Soc. 60 (1964), 957-983 985–1011

    MathSciNet  Google Scholar 

  33. N. Jacob, Pseudo Differential Operators and Markov Processes. 1, Imperial College Press London (2001

  34. M. Kac, Some remarks on stable processes. Publ. Inst. Statist. Univ. Paris. 6 (1957), 303–306

    MathSciNet  MATH  Google Scholar 

  35. V. Kokilashvili A. Meskhi H. Rafeiro S. Samko, Integral Operators in Non-standard Function Spaces. I, II, Springer-Birkhäuser (2016

  36. V. Kozlov N. G. Kuznetsov, The ice-fishing problem: The fundamental sloshing frequency versus geometry of holes. Math. Meth. Appl. Sci. 27 (2004), 289–312

    MathSciNet  MATH  Google Scholar 

  37. T. Kulczycki M. Kwaśnicki J. Małecki A. Stós, Spectral properties of the Cauchy process on half-line and interval. Proc. London Math. Soc. 30 No 2 (2010), 353–368

    MathSciNet  MATH  Google Scholar 

  38. M. Kwaśnicki, Spectral analysis of subordinate Brownian motions on the half-line. Studia Math. 206 No 3 (2011), 211–271

    MathSciNet  MATH  Google Scholar 

  39. N. S. Landkof, Foundations of Modern Potential TheorySpringer New York-Heidelberg (1972

    MATH  Google Scholar 

  40. W. Luther, Abelian and Tauberian theorems for a class of integral transforms. J. Math. Anal. Appl. 96 No 2 (1983), 365–387

    MathSciNet  MATH  Google Scholar 

  41. C. Martínez M. Sanz, The Theory of Fractional Powers of Operators. North-Holland Math. Studies. 187, Elsevier Amsterdam (2001

  42. T. M. Michelitsch G. A. Maugin A. F. Nowakowski F. C. G. A. Nicol-leau M. Rahman, The fractional Laplacian as a limiting case of a self-similar spring model and applications to η-dimensional anomalous diffusion. Fract. Calc. Appl. Anal. 16 No 4 (2013), 827–85910.2478/sl3540-013-0052-5 }rs https://www.degruyter.eom/ url }view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml

    MathSciNet  MATH  Google Scholar 

  43. S. A. Molchanov E. Ostrowski, Symmetric stable processes as traces of degenerate diffusion processes. Theor. Prob. Appl. 14 No 1 (1969), 128–131

    MathSciNet  MATH  Google Scholar 

  44. M. Riesz, Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math. Szeged. 9 (1938), 1–42

    MATH  Google Scholar 

  45. M. Riesz, Rectification au travail “Intégrales de Riemann-Liouville et potentiels”. Acta Sci. Math. Szeged. 9 (1938), 116–118

    MATH  Google Scholar 

  46. X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey. Publ. Mat. 60 No 1 (2016), 3–26

    MathSciNet  MATH  Google Scholar 

  47. B. Rubin, Fractional Integrals and Potentials. Monographs and Surveys in Pure and Applied Mathematics. 82 Chapman and Hall/CRC (1996).

  48. B. Rubin, On some inversion formulas for Riesz potentials and k-plane transforms. Fract. Calc. Appl. Anal. 15 No 1 (2012), 34–4310.2478/sl3540-012-0004-5https://www.degruyter.eom/view/j/fca.2012.15.issue-l/issue-files/fca.2012.15.issue-l.xml

    MathSciNet  MATH  Google Scholar 

  49. S. Samko, Hyper singular Integrals and Their ApplicationsCRC Press London-New York (2001

    Google Scholar 

  50. S. Samko, A note on Riesz fractional integrals in the limiting case. a(x)p(x) = n. Fract. Calc. Appl. Anal 16, No 2 (2013), 370–377 10.2478/sl3540-013-0023-xhttps://www.degruyter.eom/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml

    MathSciNet  MATH  Google Scholar 

  51. K. Sato, Lévy Processes and Infinitely Divisible DistributionsCambridge Univ. Press Cambridge (1999

    MATH  Google Scholar 

  52. R. Schilling R. Song Z. Vondraček, Bernstein Functions: Theory and Applications. Studies in Math. 37, De Gruyter Berlin (2012

  53. K. Soni R. P. Soni, Slowly varying functions and asymptotic behavior of a class of integral transforms: I, II, III. J. Anal. Appl. 49 (1975), 166–179 477–495-612–628

    MathSciNet  MATH  Google Scholar 

  54. F. Spitzer, Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 (1958), 187–197

    MathSciNet  MATH  Google Scholar 

  55. E. M. Stein, Singular Integrals And Differentiability Properties Of FunctionsPrinceton University Press Princeton (1970

    MATH  Google Scholar 

  56. P. R. Stinga J. L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Diff. Equations. 35 (2010), 2092–2122

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Kwaśnicki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwaśnicki, M. Ten Equivalent Definitions of the Fractional Laplace Operator. FCAA 20, 7–51 (2017). https://doi.org/10.1515/fca-2017-0002

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0002

MSC 2010

Key Words and Phrases

Navigation