Skip to main content
Log in

Consensus of Fractional-Order Multi-Agent Systems with Input Time Delay

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Many phenomena in inter-disciplinary fields can be explained naturally by coordinated behavior of agents with fractional-order dynamics. Under the assumption that the interconnection topology of all agents has a spanning tree, the consensuses of linear and nonlinear fractional-order multi-agent systems with input time delay are studied, respectively. Based on the properties of Mittag-Leffler function, matrix theory, stability theory of fractional-order differential equations, some sufficient conditions on consensus are derived by using the technique of inequality, which shows that the consensus can be achieved for any bounded input time delay. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aghajani Y. Jalilian J. Trujillo, On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15 No 1 (2012), 44–69 DOI: 10.2478/s13540-012-0005-4https://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml

    Article  MathSciNet  Google Scholar 

  2. J. Bai G. Wen A. Rahmani Y. Yu, Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay. Int. J. Syst. Sci. 46 No 13 (2015), 2380–2392

    Article  MathSciNet  Google Scholar 

  3. V. Borkar P. Varaiya, Asymptotic agreement in distributed estimation. IEEE Trans. Automat. Contr. 27 No 3 (1982), 650–655

    Article  MathSciNet  Google Scholar 

  4. Y. Cao Y. Li W. Ren Y. Chen, Distributed coordination algorithms for multiple fractional-order systems. Proc. of the 47th IEEE Conference on Decision and Control Cancun Mexico (2008), 2920–2925

    Google Scholar 

  5. Y. Cao W. Ren, Distributed coordination of fractional-order systems with extensions to directed dynamic networks and absolute/relative damping. Joint 48th IEEE Conf. on Decision and Control and 28th Chinese Control Conference Shanghai (2009), 7125–7130

    Google Scholar 

  6. Y. Cao Y. Li W. Ren Y. Chen, Distributed coordination of networked fractional-order systems. IEEE Trans. on Systems, Man, and Cybern., Part B: Cybernetics. 40 No 2 (2010), 362–370

    Article  Google Scholar 

  7. Y. Cao W. Ren, Distributed coordination for fractional-order systems: dynamic interaction and absolute/relative damping. Syst. Contr. Lett. 43 No 3-4 (2010), 233–240

    Article  Google Scholar 

  8. L. Chen Y. Chai R. Wu J. Yang, Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circ. and Syst.-II: Express Briefs. 59 No 9 (2012), 602–606

    Google Scholar 

  9. M. De la Sen, About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory and Appl. 2011 (2011) Article # 867932 DOI:10.1155/2011/867932

  10. M. DeGroot, Reaching a consensus. J. Amer. Stat. Assoc. 69 No 345 (1974), 118–121

    Article  Google Scholar 

  11. W. Deng C. Li J. Lu¨, Stability analysis of linear fractional differential system with multiple time dealys. Nonlin. Dyn. 48 No 4 (2007), 409–416

    Article  Google Scholar 

  12. R. Hilfer, Applications of Fractional Calculus in PhysicsWord Scientific Singapore (2000

    Book  Google Scholar 

  13. A. Kilbas H. Srivastava J. Trujillo, Theory and Applications of Fractional Differential EquationsElsevier The Netherlands (2006

    MATH  Google Scholar 

  14. W. Li T. Li L. Xie J. Zhang, Necessary and sufficient conditions for bounded distributed mean square tracking of multi-agent systems with noises. Int. J. Robust Nonlin. Contr. 26 No 4 (2016), 631–645

    Article  MathSciNet  Google Scholar 

  15. J. Liang Z. Liu X. Wang, Solvability for a couple system of nonlinear fractional differential equations in a Banach space. Fract. Calc. Appl. Anal. 16 No 1 (2013), 51–63 DOI:10.2478/s13540-013-0004-0https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml

    Article  MathSciNet  Google Scholar 

  16. Y. Lin K. Oh H. Ahn, Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Trans. Automat. Contr. 58 No 4 (2013), 1062–1067

    Article  MathSciNet  Google Scholar 

  17. C. Liu Y. Tian, Consensus of multi-agent system with diverse communication delays. Proc. of the 26th Chinese Control Conference, Hunan (2007), 726–730

    Google Scholar 

  18. J. Lu Y. Chen, Stability and stabilization of fractional-order linear systems worh convex polytopic uncertainties. Fract. Calc. Appl. Anal. 16 No 1 (2013), 142–157 DOI:10.2478/s13540-013-0010-2https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml

    Article  MathSciNet  Google Scholar 

  19. R. Olfati-Saber R. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49 No 9 (2004), 1520–1533

    Article  MathSciNet  Google Scholar 

  20. I. Podlubny, Fractional Differential EquationsAcademic Press New York (1999

    MATH  Google Scholar 

  21. W. Ren Y. Cao, Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and IssuesSpringer-Verlag London (2011

    Book  Google Scholar 

  22. J. Shen J. Cao, Necessary and sufficient conditions for consensus of delayed fractional-order systems. Asian J. of Contr. 14 No 6 (2012), 1690–1697

    Article  MathSciNet  Google Scholar 

  23. J. Shen J. Cao J. Lu, Consensus of fractional-order systems with non-uniform input and communication delays. Proc. Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 226 No 2 (2012), 271–283

    Google Scholar 

  24. Y. Tang H. Gao W. Zhang J. Kurths, Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses. Automatica. 53 (2015), 346–354

    Article  MathSciNet  Google Scholar 

  25. J. Tsitsiklis D. Bertsekas M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Automat. Contr. 31 No 9 (1986), 803–812

    Article  MathSciNet  Google Scholar 

  26. T. Vicsek A. Cziro´k E. Jacob I. Cohen O. Shochet, Novel type of phase transitions in a system of self-driven particles. Phys. Rev. Lett. 75 No 6 (1995), 1226–1229

    Article  MathSciNet  Google Scholar 

  27. Y. Wan G. Wen J. Cao W. Yu, Distributed node-to-node consensus of multi-agent systems with stochastic sampling. Int. J. Robust Nonlin. Contr. 26 No 1 (2016), 110–124

    Article  MathSciNet  Google Scholar 

  28. H. Yang L. Guo X. Zhu K. Cao H. Zou, Consensus of compound-order multi-agent systems with communication delays. Cent. Eur. J. Phys. 11 No 6 (2013), 806–812

    Google Scholar 

  29. H. Yang X. Zhu K. Cao, Distributed coordination of fractional order multi-agent systems with communicaiton delay. Fract. Calc. Appl. Anal. 17 No 1 (2014), 23–37 DOI:10.2478/s13540-014-0153-9https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml

    Article  MathSciNet  Google Scholar 

  30. H. Ye J. Gao Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 No 2 (2007), 1075–1081

    Article  MathSciNet  Google Scholar 

  31. X. Yin D. Yue S. Hu, Consensus of fractional-order heterogeneous multi-agent systems. IET Contr. Theory Appl. 7 No 2 (2013), 314–322

    Article  MathSciNet  Google Scholar 

  32. Z. Yu H. Jiang C. Hu, Leader-following consensus of fractional-order multi-agent systems under fixed topology. Neurocomputing. 149 No B (2015), 613–620

    Article  Google Scholar 

  33. X. Zhang L. Liu G. Feng, Leader-follower consensus of time-varying nonlinear multi-agent systems. Automatica. 52 (2015), 8–14

    Article  MathSciNet  Google Scholar 

  34. W. Zhu Z. Jiang, Event-based leader-following consensus of multi-agent systems with input time delay. IEEE Trans. Automat. Contr. 60 No 5 (2015), 1362–1367

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Chen, B. & Yang, J. Consensus of Fractional-Order Multi-Agent Systems with Input Time Delay. FCAA 20, 52–70 (2017). https://doi.org/10.1515/fca-2017-0003

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0003

MSC 2010

Keywords

Navigation