Skip to main content
Log in

Asymptotic Behavior of Solutions of Nonlinear Fractional Differential Equations with Caputo-Type Hadamard Derivatives

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, the authors study the asymptotic behavior of solutions of higher order fractional differential equations with Caputo-type Hadamard derivatives of the form

$$^{C,H}D_a^rx\left( t \right) = e\left( t \right) + f\left( {t,x\left( t \right)} \right),\,\,\,\,a >1,$$

where r = n+α–1, α ∊ (0,1), and n ∊ℤ+. They also apply their technique to investigate the oscillatory and asymptotic behavior of solutions of the related integral equation

$$x\left( t \right) = e\left( t \right) + \int_a^t {{{\left( {\ln \frac{t}{s}} \right)}^{r - 1}}} \,\,k\left( {t,s} \right)f\left( {s,x\left( s \right)} \right)\frac{}{s},\,\,\,a > 1,\,\,\,r\,\,is\,as\,above.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Agarwal S. Hristova D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 19 No 2 (2016), 290–31810.1515/fca-2016-0017https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml

    Article  MathSciNet  Google Scholar 

  2. R.P. Agarwal Y. Zhou Y. He, Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59 (2010), 1095–1100.

    Article  MathSciNet  Google Scholar 

  3. B. Ahmad J.J. Nieto, Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 2011 (2011), Article ID 36-9

  4. B. Ahmad J.J. Nieto, Boundary value problems for a class of sequential integro differential equations of fractional order. J. Func. Space Appl. 2013 (2013), Article ID 149659-8

  5. B. Ahmad N. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17 No 2 (2014), 348–36010.2478/s13540-014-0173-5https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml

    Article  MathSciNet  Google Scholar 

  6. B. Ahmad S.K. Ntouyas A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Difference Equ. 2011 (2011), Article ID 107384-11

  7. B. Ahmad S.K. Ntouyas A. Alsaedi, A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions. Math. Probl. Eng. 2013 (2013), Article ID 320415-9.

  8. S. Arshad V. Lupulescu D. O’Regan, Lp solutions for fractional integral equations. Fract. Calc. Appl. Anal. 17 No 1 (2014), 259–27610.2478/s13540-014-0166-4https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml

    Article  MathSciNet  Google Scholar 

  9. D. Băleanu K. Diethelm E. Scalas J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Ser. on ComplexityNonlinearity and Chaos, World Scientific Singapore (2012).

    Google Scholar 

  10. D. Băleanu O.G. Mustafa R.P. Agarwal, On Lp-solutions for a class of sequential fractional differential equations. Appl. Math. Comput. 218 (2011), 2074–2081.

    MathSciNet  MATH  Google Scholar 

  11. P.L. Butzer A.A. Kilbas J.J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269 (2002), 387–400.

    Article  MathSciNet  Google Scholar 

  12. P.L. Butzer A.A. Kilbas J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269 (2002), 1–27.

    Article  MathSciNet  Google Scholar 

  13. P.L. Butzer A.A. Kilbas J.J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270 (2002), 1–15.

    Article  MathSciNet  Google Scholar 

  14. W.T. Coffey Y.P. Kalmykov J.T. Waldron, The Langevin Equation 2nd Edition World Scientific Singapore (2004).

    Book  Google Scholar 

  15. Y.Y. Gambo F. Jarad D. Băleanu T. Abdeljawad, On Caputo modification of the Hadamard fractional derivative. Adv. Difference Eqs. 2014 (2014), Article ID 10–12.

    Article  Google Scholar 

  16. J. Hadamard, Essai sur l’étude des fonctions données par leur développment de Taylor. Journal de Mathématiques Pures et Appliquées. 8 (1892), 101–186

    MATH  Google Scholar 

  17. G.H. Hardy I.E. Littlewood G. Polya, Inequalities Reprint of the 1952 edition Cambridge University Press Cambridge (1988).

    Google Scholar 

  18. F. Jarad T. Abdeljawad D. Băleanu, Caputo-type modification of the Hadamard fractional derivatives. Adv. Difference Equ. 2012 (2012), Article ID 142–8

    Article  MathSciNet  Google Scholar 

  19. A.A. Kilbas, Hadamard-type fractional calculus. J. Korean Math. Soc. 38 (2001), 1191–1204

    MathSciNet  MATH  Google Scholar 

  20. A.A. Kilbas H.M. Srivastava J.T. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. 204, Elsevier Amsterdam (2006).

  21. A.A. Kilbas J.J. Trujillo, Hadamard-type integrals as G-transforms. Integral Transforms Spec. Funct. 14 (2003), 413–427

    Article  MathSciNet  Google Scholar 

  22. X. Liu M. Jia W. Ge, Multiple solutions of a p-Laplacian model involving a fractional derivative. Adv. Difference Equ. 2013 (2013), Article ID 126-12

  23. Z. Mansour, On a class of nonlinear Volterra-Fredholm q-integral equations. Fract. Calc. Appl. Anal. 17 No 1 (2014), 61–7810.2478/s13540-014-0155-7https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml

    Article  MathSciNet  Google Scholar 

  24. D. O’Regan S. Staněk, Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71 (2013), 641–652

    Article  MathSciNet  Google Scholar 

  25. I. Podlubny, Fractional Differential EquationsAcademic Press San Diego (1999).

    MATH  Google Scholar 

  26. S.G. Samko A.A. Kilbas O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers Yverdon, Switzerland (1993).

    MATH  Google Scholar 

  27. L. Zhang B. Ahmad G. Wang R.P. Agarwal, Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249 (2013), 51–56.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Graef.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graef, J.R., Grace, S.R. & Tunç, E. Asymptotic Behavior of Solutions of Nonlinear Fractional Differential Equations with Caputo-Type Hadamard Derivatives. FCAA 20, 71–87 (2017). https://doi.org/10.1515/fca-2017-0004

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0004

MSC 2010

Key Words and Phrases

Navigation