Skip to main content
Log in

A preconditioned Fast Finite Difference Method for Space-Time Fractional Partial Differential Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We develop a fast space-time finite difference method for space-time fractional diffusion equations by fully utilizing the mathematical structure of the scheme. A circulant block preconditioner is proposed to further reduce the computational costs. The method has optimal-order memory requirement and approximately linear computational complexity. The method is not lossy, as no compression of the underlying numerical scheme has been employed. Consequently, the method retains the stability, accuracy, and, in particular, the conservation property of the underlying numerical scheme. Numerical experiments are presented to show the efficiency and capacity of long time modelling of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Benson and S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (2000), 1403–1412.

    Article  Google Scholar 

  2. D. Benson and S.W. Wheatcraft and M.M. Meerschaert, The fractionalorder governing equation of Lévy motion. Water Resour. Res. 36 (2000), 1413–1423.

    Google Scholar 

  3. K. Burrage and N. Hale and D. Kay, An efficient implementation of an implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34 (2012), A2145–A2172.

    MATH  Google Scholar 

  4. T.F. Chan, An optimal circulant preconditioner for toeplitz systems. SIAM J. Sci. Stat. Comput. 9 (1988), 766–771.

    MathSciNet  MATH  Google Scholar 

  5. T.F. Chan and J.A. Olkin, Circulant preconditioners for Toeplitz-block matrices. Numer. Alg. 6 (1994), 89–101.

    MathSciNet  MATH  Google Scholar 

  6. R.H. Chan and M.K. Ng, Conjugate gradient methods for Toeplitz systems. SIAM Review 38 (1996), 427–482.

    MathSciNet  MATH  Google Scholar 

  7. W. Chen and Y. Liang and S. Hu and H. Sun, Fractional derivative anomalous diffusion equation modeling prime number distribution. Fract. Calc. Appl. Anal. 18, No 3 (2015), 789–798 10.1515/fca-2015-0047 https://www.degruyter.com/view/j/fca.2015.18.issue-3/ issue-files/fca.2015.18.issue-3.xml

    MathSciNet  MATH  Google Scholar 

  8. M. Cui, Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228 (2009), 7792–7804.

    MathSciNet  MATH  Google Scholar 

  9. P.J. Davis Circulant Matrices Wiley-Intersciences New York, 1979.

    MATH  Google Scholar 

  10. D. del-Castillo-Negrete and B.A. Carreras and V. E. Lynch, Fractional diffusion in plasma turbulence. Physics of Plasmas 11, No 8 (2004), 3854–3864.

    Google Scholar 

  11. W. Deng, Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47 (2008), 204–226.

    MathSciNet  MATH  Google Scholar 

  12. K. Diethelm The Analysis of Fractional Differential Equations Springer Berlin, 2010.

    MATH  Google Scholar 

  13. K. Diethelm and N. Ford and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29 (2002), 3–22.

    MathSciNet  MATH  Google Scholar 

  14. K. Diethelm and A.D. Freed, An efficient algorithm for the evaluation of convolution integrals. Comput. Math. Appl. 51 (2006), 51–72.

    MathSciNet  MATH  Google Scholar 

  15. V.J. Ervin and V.J. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods. Partial Differential Eq. 22 (2005), 558–576.

    MathSciNet  MATH  Google Scholar 

  16. G. Gao and H. Sun and Z. Sun, Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280 (2015), 510–528.

    MathSciNet  MATH  Google Scholar 

  17. R. Gorenflo and F. Mainardi and E. Scalas and M. Raberto, Fractional calculus and continuous-time finance III: The diffusion limit. Mathematical finance (Konstanz, 2000). Trends Math. (2001), 171–180.

    Google Scholar 

  18. R. Gorenflo and F. Mainardi and D. Moretti and P. Paradisim, Time fractional diffusion: A discrete random walk approach. Nonlinear Dynamics 29 (2002), 129–143.

    MathSciNet  MATH  Google Scholar 

  19. R.M. Gray Toeplitz and Circulant Matrices: A Review. Ser. Foundations and Trends in Communications and Information Theory. 2, No 3 NOW Boston, (2006).

    Google Scholar 

  20. R. Hilfer Applications of Fractional Calculus in Physics Word Scientific Singapore, (2000).

    Book  Google Scholar 

  21. C. Ji and Z. Sun, The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269 (2015), 775–791.

    MathSciNet  MATH  Google Scholar 

  22. B. Jin and R. Lazarov and Y. Liu and Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281 (2015), 825–843.

    MathSciNet  MATH  Google Scholar 

  23. B. Jin and R. Lazarov and J. Pasciak and Z. Zhou, Error analysis of finite element methods for space-fractional parabolic equations. SIAM J. Numer. Anal. 52 (2014), 2272–2294.

    MathSciNet  MATH  Google Scholar 

  24. A. Kilbas and H. Srivastava and J. Trujillo Theory and Applications of Fractional Differential Equations Elsevier Amsterdam, (2006).

    MATH  Google Scholar 

  25. C. Li and H. Ding, Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38 (2014), 3802–3821.

    MathSciNet  MATH  Google Scholar 

  26. X. Li and C. Xu, The existence and uniqueness of the week solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8 (2010), 1016–1051.

    MathSciNet  MATH  Google Scholar 

  27. R. Lin and F. Liu and V. Anh and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212 (2009), 435–445.

    MathSciNet  MATH  Google Scholar 

  28. Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007), 1533–1552.

    MathSciNet  MATH  Google Scholar 

  29. F. Liu and V. Anh and I. Turner, Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166 (2004), 209–219.

    MathSciNet  MATH  Google Scholar 

  30. V.E. Lynch and B.A. Carreras and D. del-Castillo-Negrete and K.M. Ferreira-Mejias and H.R. Hicks, Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192 (2003), 406–421.

    MathSciNet  MATH  Google Scholar 

  31. R.L. Magin Fractional Calculus in Bioengineering Begell House Publishers, (2006.

    Google Scholar 

  32. F. Mainardi and M. Raberto and R. Gorenflo and E. Scalas, Fractional calculus and continuous-time finance II: The waiting-time distribution, Physica A 287 (2000), 468–481.

    MATH  Google Scholar 

  33. M.M. Meerschaert and D.A. Benson and B. Baeumer, Multidimensional advection and fractional dispersion. Phys. Rev. E 59 (1999), 5026–5028.

    Google Scholar 

  34. M.M. Meerschaert and D.A. Benson and B. Baeumer, Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63 (2001), 1112–1117.

    Google Scholar 

  35. M.M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics 43. Walter de Gruyter Berlin/Boston, 2012.

  36. M.M. Meerschaert and M.M. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56 (2006), 80–90.

    MathSciNet  MATH  Google Scholar 

  37. R. Metler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Reports 339 (2000), 1–77.

    MathSciNet  MATH  Google Scholar 

  38. R. Metler and J. Klafter, The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. 37 (2004), R161–R208.

    MathSciNet  MATH  Google Scholar 

  39. K.B. Oldham and J. Spanier The Fractional Calculus Academic Press New York, 1974.

    MATH  Google Scholar 

  40. D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56 (2008), 1138–1145.

    MathSciNet  MATH  Google Scholar 

  41. I. Podlubny Fractional Differential Equations Academic Press New York, 1999.

    MATH  Google Scholar 

  42. I. Podlubny and A. Chechkin and T. Skovranek and Y. Chen and B.M. Vinagre Jara, Matrix approach to discrete fractional calculus. II. Partial fractional differential equations. J. Comput. Phys. 228 (2009), 3137–3153.

    MathSciNet  MATH  Google Scholar 

  43. S. Samko and A. Kilbas and O. Marichev Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach London, 1993.

    MATH  Google Scholar 

  44. E. Scalas and R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance. Physica A 284 (2000), 376–384.

    MathSciNet  Google Scholar 

  45. J. Song and Q. Yu and F. Liu and I. Turner, A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation. Numer. Alg. 66 (2014), 911–932.

    MathSciNet  MATH  Google Scholar 

  46. E. Sousa, Finite difference approximates for a fractional advection diffusion problem. J. Comput. Phys. 228 (2009), 4038–4054.

    MathSciNet  MATH  Google Scholar 

  47. H. Sun and Y. Zhang and W. Chen and D.M. Reeves, Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contaminant Hydrology 157 (2014), 47–58.

    Google Scholar 

  48. E.E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners. SIAM J. Matrix Anal. Appl. 13 (1992), 459–473.

    MathSciNet  MATH  Google Scholar 

  49. R.S. Varga Matrix Iterative Analysis Second Springer-Verlag Berlin-Heideberg, (2000).

    MATH  Google Scholar 

  50. H. Wang and T.S. Basu, A fast finite difference method for twodimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34 (2012), 2444–2458.

    MathSciNet  Google Scholar 

  51. H. Wang and N. Du, A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240 (2013), 49–57.

    MathSciNet  MATH  Google Scholar 

  52. H. Wang and N. Du, A fast finite difference method for threedimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253 (2013), 50–63.

    MathSciNet  MATH  Google Scholar 

  53. H. Wang and N. Du, Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258 (2013), 305–318.

    MathSciNet  MATH  Google Scholar 

  54. H. Wang and K. Wang and T. Sircar, A direct O (N log2N) finite difference method for fractional diffusion equations. J. Comput. Phys. 229 (2010), 8095–8104.

    MathSciNet  MATH  Google Scholar 

  55. H. Wang and D. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51 (2013), 1088–1107.

    MathSciNet  MATH  Google Scholar 

  56. K. Wang and H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water. Res. 34 (2011), 810–816.

    Google Scholar 

  57. F. Zeng and C. Li and F. Liu and I. Turner, Numerical algorithms for timefractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37 (2015), A55–A78.

    MATH  Google Scholar 

  58. H. Zhang and F. Liu and P. Zhuang and I. Turner and V. Anh, Numerical analysis of a new space-time variable fractional order advection-dispersion equation. Appl. Math. Comput. 242 (2014), 541–550.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Fu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Wang, H. A preconditioned Fast Finite Difference Method for Space-Time Fractional Partial Differential Equations. FCAA 20, 88–116 (2017). https://doi.org/10.1515/fca-2017-0005

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0005

MSC 2010

Key Words and Phrases

Navigation