Skip to main content
Log in

Solutions of the Main Boundary Value Problems for the Time-Fractional Telegraph Equation by the Green Function Method

  • Research paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The inhomogeneous time-fractional telegraph equation with Caputo derivatives with constant coefficients is considered. For the considered equation, general representation of regular solution in rectangular domain is obtained and the fundamental solution is presented. Using this representation and the properties of the fundamental solution, the Cauchy problem and the main boundary value problems in half-strip and rectangular domains are studied. For the Cauchy problem theorems of existence and uniqueness of solution are proved, and the explicit form of the solution is constructed. The solutions of the investigated problems are constructed in terms of the appropriate Green functions, which are also constructed in explicit form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Atanackovic S. Pilipovic D. Zorica, Diffusion wave equation with two fractional derivatives of different order. J. Phys. A Math. Theor. 40 (2007), 5319–5333

    Article  MathSciNet  Google Scholar 

  2. E. Bazhlekova, On a nonlocal boundary value problem for the two-term time-fractional diffusion-wave equation. AIP Conference Proceedings 01/2013. 1561 (2013), 172–183

    Article  Google Scholar 

  3. R. Figueiredo Camargo R. Charnet E. Capelas de Oliveira, On some fractional Greens functions. J. Math. Phys. 50 ID # 043514 (2009), 10.1063/1.3119484

  4. R.C. Cascaval E.C. Eckstein C.L. Frota J.A. Goldstein, Fractional telegraph equations. J. Math. Anal. Appl. 276 No 1 (2002), 145–159

    Article  MathSciNet  Google Scholar 

  5. J. Chen F. Liu V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338 No 2 (2008), 1364–1377

    Article  MathSciNet  Google Scholar 

  6. X.-Li Ding J.J. Nieto, Analytical solutions for the multi-term timespace fractional reaction-diffusion equations on an infinite domain. Fract. Calc. Appl. Anal. 18 No 3 (2015), 697-71610.1515/fca-2015-0043; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml

    Google Scholar 

  7. A.Z. Fino H. Ibrahim, Analytical solution for a generalized spacetime fractional telegraph equation. Math. Meth. Appl. Sci. 36 (2013), 1813–1824

    Article  Google Scholar 

  8. F. Huang F. Liu, The time fractional diffusion equation and the advection-dispersion equation. The ANZIAM Journal. 46 (2005), 317–330

    Article  MathSciNet  Google Scholar 

  9. F. Huang, Analytic solution of the time-fractional telegraph equation. J. Appl. Math. 2009 (2009), Article ID 890158 9p

  10. A.A. Kilbas H.M. Srivastava J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  11. A.N. Kochubei, Asymptotic properties of solutions of the fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 17 No 3 (2014), 881–98610.2478/s13540-014-0203-3; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml

    Article  MathSciNet  Google Scholar 

  12. F. Liu V.V. Anh I. Turner P. Zhuang, Time fractional advection-ispersion equation. J. Appl. Math. Computing. 13 (2003), 223–245

    Article  MathSciNet  Google Scholar 

  13. Y.u. Luchko, Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14 No 1 (2011), 110–12410.2478/s13540-011-0008; https://www.degruyter.com/view/j/fca.2011.14.issue-1/issue-files/fca.2011.14.issue-1.xml

    Article  MathSciNet  Google Scholar 

  14. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9 No 6 (1996), 23–28

    Article  MathSciNet  Google Scholar 

  15. M.O. Mamchuev, General representation of a solution of a fractional diffusion equation with constant coefficients in a rectangular domain. Izv. Kabardino-Balkarsk, Nauch. Ts. RAN. 12 No 2 (2004), 116–118 (In Russian).

    Google Scholar 

  16. M.O. Mamchuev, Boundary value problems for a fractional diffusion equation with constant coefficients. Dokl. Adyg, (Cherkessk.) Mezhdunar. Akad. Nauk, 7 No 2 (2005), 38–45 (In Russian).

    Google Scholar 

  17. M.O. Mamchuev, Fundamental solution of a loaded second-order parabolic equation with constant coefficients. Differential Equations. 51 No 5 (2015), 620–629

    Article  MathSciNet  Google Scholar 

  18. M.O. Mamchuev, Modified Cauchy problem for a loaded second-order parabolic equation with constant coefficients. Differential Equations. 51 No 9 (2015), 1137–1144

    Article  MathSciNet  Google Scholar 

  19. M.O. Mamchuev, Boundary Value Problems for Equations and Systems of Equations with Partial Derivatives of Fractional Order, Publishing House KBSC of RAS, Nalchik (2013), (In Russian).

    Google Scholar 

  20. A.M. Nakhushev, Fractional Calculus and Its Application, Fizmatlit, Moscow (2003), (In Russian).

    MATH  Google Scholar 

  21. E. Orsinger X. Zhao, The space-fractional telegraph equation and the related fractional telegraph process. Chinese Ann. Math. Ser. B. 24 No 1 (2003), 45–56

    Article  MathSciNet  Google Scholar 

  22. E. Orsinger L. Beghin, Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Related Fields. 128 No 1 (2004), 141–160

    Article  MathSciNet  Google Scholar 

  23. Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14 No 3 (2011), 418–43510.2478/s13540-011-0026-4; https://www.degruyter.com/view/j/fca.2011.14.issue-3/issue-files/fca.2011.14.issue-3.xml

    Article  MathSciNet  Google Scholar 

  24. A.V. Pskhu, Solution of boundary value problems for the fractional diffusion equation by the Green function method. Differential Equations. 39 No 10 (2003), 1509–1513

    Article  MathSciNet  Google Scholar 

  25. A.V. Pskhu, Fractional Partial Differential Equations Nauka, Moscow (2005), (In Russian).

    MATH  Google Scholar 

  26. A.V. Pskhu, The fundamental solution of a fractional diffusion-wave equation. Izv. Ross. Akad. Nauk Ser. Mat. 73 No 2 (2009), 141–182 (In Russian).

    Article  MathSciNet  Google Scholar 

  27. E.M. Wright, On the coefficients of power series having exponential singularities. J. London Math. Soc. 8 (1933), 71–79

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat O. Mamchuev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamchuev, M.O. Solutions of the Main Boundary Value Problems for the Time-Fractional Telegraph Equation by the Green Function Method. FCAA 20, 190–211 (2017). https://doi.org/10.1515/fca-2017-0010

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0010

MSC 2010

Key Words and Phrases

Navigation