Skip to main content
Log in

A Foundational Approach to the Lie Theory for Fractional Order Partial Differential Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We provide a general theoretical framework allowing us to extend the classical Lie theory for partial differential equations to the case of equations of fractional order. We propose a general prolongation formula for the study of Lie symmetries in the case of an arbitrary finite number of independent variables. We also prove the Lie theorem in the case of fractional differential equations, showing that the proper space for the analysis of these symmetries is the infinite dimensional jet space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Barkai, and R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61 (2000), 132–138.

    Article  MathSciNet  Google Scholar 

  2. G.W. Bluman, and S. Kumei, Symmetries and Differential Equations Ser. Applied Mathematical Sciences. 81. World Publishing Co. (1989).

  3. M. Bologna, and C. Tsallis, and P. Grigolini, Anomalous diffusion associated with nonlinear fractional derivative Fokker–Planck-like equation: Exact time-dependent solutions. Phys. Rev. E 62, No 2 (2000), 2213–2218.

    Article  Google Scholar 

  4. E. Buckwar, and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, No 1 (1998), 81–97.

    Article  MathSciNet  Google Scholar 

  5. A.V. Chechkin, and V.Yu. Gonchar, and M. Szydłowski, Fractional kinetics for relaxation and superdiffusion in a magnetic field. Phys. Plasmas 9, No 1 (2002), 78–88.

    Article  Google Scholar 

  6. M. Concezzi, and R. Garra, and R. Spigler, Fractional relaxation and fractional oscillation models involving Erdéiyi–Kober integrals. Fract. Calc. Appl. Anal. 18, No 5 (2015), 1212–1231 10.1515/fca-2015-0070 https://www.degruyter.com/view/j/fca.2015.18.issue-5/issue-files/fca.2015.18.issue-5.xml

    Article  MathSciNet  Google Scholar 

  7. D. del Castillo-Negrete, and B.A. Carreras, and V.E. Lynch, Front dynamics in reaction-diffusion systems with Lévy flights: A fractional diffusion approach. Phys. Rev. Lett. 91 (July 2003), 018302.

    Article  Google Scholar 

  8. A. Erdélyi, On fractional integration and its application to the theory of Hankel transforms. Quart. J. Math. OS-11, No 1 (1940), 293–303.

    Article  MathSciNet  Google Scholar 

  9. R.K. Gazizov, and A.A. Kasatkin, and S.Y. Lukashchuk, Symmetry properties of fractional diffusion equations. Phys. Scripta T136 (Oct. 2009), 014016.

    Article  Google Scholar 

  10. R.K. Gazizov, and A.A. Kasatkin, and S.Y. Lukashchuk, Group-invariant solutions of fractional differential equations In: J.A. Tenreiro Machado, and A.C.J. Luo, and R.S. Barbosa, and M.F. Silva, and L.B. Figueiredo, Nonlinear Science and Complexity. Springer Sci. & Business Media, 2011), 51–59.

    Chapter  Google Scholar 

  11. Q. Huang, and S. Shen, Lie symmetries and group classification of a class of time fractional evolution systems. J. Math. Phys. 56, No 12 (2015), 123504.

    Article  MathSciNet  Google Scholar 

  12. Q. Huang, and R. Zhdanov, Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative. Physica A 409 (2014), 110–118.

    Article  MathSciNet  Google Scholar 

  13. N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics Ser. Mathematics and its Applications. Springer Netherlands (2001).

    Google Scholar 

  14. A.A. Kilbas, and H.M. Srivastava, and J.J. Trujillo, Theory and Applicationes of Fractional Differential Equations Ser. North-Holland Mthematics Studies. Elsevier (2006).

    Google Scholar 

  15. H. Kober, On fractional integrals and derivatives. Quart. J. Math. OS-11, No 1 (1940), 193–211.

    Article  MathSciNet  Google Scholar 

  16. J. Krasil’shchik, and A. Verbovetsky, Geometry of jet spaces and integrable systems. J. Geometry Phys. 61, No 9 (2011), 1633–1674.

    Article  MathSciNet  Google Scholar 

  17. E.K. Lenzi, and R.S. Mendes, and K.S. Fa, and L.S. Moraes, and L.R. da Silva, and L.S. Lucena, Nonlinear fractional diffusion equation: Exact results. J. Math. Phys. 46, No 8 (2005), 083506.

    Article  MathSciNet  Google Scholar 

  18. R.A. Leo, and G. Sicuro, and P. Tempesta, A theorem on the existence of symmetries of fractional PDEs. C. R. Math. 352, No 3 (2014), 219–222.

    Article  MathSciNet  Google Scholar 

  19. Benoit B Mandelbrot, and John W Van Ness, Fractional brownian motions, fractional noises and applications. SIAM Review 10, No 4 (1968), 422–437.

    Article  MathSciNet  Google Scholar 

  20. R. Metzler, and E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82 (May 1999), 3563–3567.

    Article  Google Scholar 

  21. K.B. Oldham, and J. Spanier, The Fractional Calculus Ser. Mathematics in Science and Engineering. Academic Press (1974)

    MATH  Google Scholar 

  22. P.J. Olver, Applications of Lie Groups to Differential Equations Ser. Graduate Texts in Mathematics. Springer New York, 2000.

    MATH  Google Scholar 

  23. T.J. Osler, Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18, No 3 (1970), 658–674.

    Article  MathSciNet  Google Scholar 

  24. B. Ross, The development of fractional calculus 1695–1900. Historia Mathematica 4, No 1 (1977), 75–89.

    Article  MathSciNet  Google Scholar 

  25. J. Sabatier, and O.P. Agrawal, and J.A.T. Machado, Advances in Fractional Calculus Springer (2007)

    Book  Google Scholar 

  26. R. Sahadevan, and T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 393, No 2 (2012), 341–347.

    Article  MathSciNet  Google Scholar 

  27. S. Samko, and A.A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives Taylor & Francis (1993)

    MATH  Google Scholar 

  28. D.J. Saunders, The Geometry of Jet Bundles Cambridge University Press Cambridge, (1989).

    Book  Google Scholar 

  29. E. Scalas, and R. Gorenflo, and F. Mainardi, Fractional calculus and continuous-time finance. Physica A 284, No 1–4 (2000), 376–384.

    Article  MathSciNet  Google Scholar 

  30. A.M. Vinogradov, Symmetries and conservation laws of partial differential equations: Basic notions and results. Acta Appl. Math. 15, No 1-2 (1989), 3–21.

    Article  MathSciNet  Google Scholar 

  31. A.M. Vinogradov, and J. Krasi’shchik, Symmetries and Conservation Laws for Differential Equations of Mathematical Physics American Mathematical Society (1999).

    Google Scholar 

  32. X.-B. Wang, and S.-F. Tian, and C.-Y. Qin, and T.-T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation. EPL (Europhysics Letters) 114, No 2 (2016), 20003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Antonio Leo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leo, R.A., Sicuro, G. & Tempesta, P. A Foundational Approach to the Lie Theory for Fractional Order Partial Differential Equations. FCAA 20, 212–231 (2017). https://doi.org/10.1515/fca-2017-0011

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0011

MSC 2010

Key Words and Phrases

Navigation