Skip to main content
Log in

Impact of Fractional Order Methods on Optimized Tilt Control for Rail Vehicles

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Advances in the use of fractional order calculus in control theory increasingly make their way into control applications such as in the process industry, electrical machines, mechatronics/robotics, albeit at a slower rate into control applications in automotive and railway systems. We present work on advances in high-speed rail vehicle tilt control design enabled by use of fractional order methods. Analytical problems in rail tilt control still exist especially on simplified tilt using non-precedent sensor information (rather than use of the more complex precedence (or preview) schemes). Challenges arise due to suspension dynamic interactions (due to strong coupling between roll and lateral dynamic modes) and the sensor measurement. We explore optimized PID-based non-precedent tilt control via both direct fractional-order PID design and via fractional-order based loop shaping that reduces effect of lags in the design model. The impact of fractional order design methods on tilt performance (track curve following vs ride quality) trade off is particularly emphasized. Simulation results illustrate superior benefit by utilizing fractional order-based tilt control design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Åström, T. Hägglund, Advanced PID Control. ISA - The Instrum., Systems, and Autom. Society, Res. Triangle Park, NC (2006).

    Google Scholar 

  2. A. Banos, J. Cervera, P. Lanusse, J. Sabatier, Bode optimal loop shaping with CRONE compensators. Journal of Vibration and Control 17, No 13 (2011), 1964–1974.

    Article  MathSciNet  Google Scholar 

  3. G.W. Bohannan, Analog fractional order controller in temperature and motor control applications. Journal of Vibration and Control 14, No 9–10 (2008), 1487–1498.

    Article  MathSciNet  Google Scholar 

  4. D. Boocock, B.L. King, The development of the prototype advanced passenger train. Proc. of the Institution of Mechanical Engineers 196, No 1 (1982), 35–46.

    Article  Google Scholar 

  5. R. Caponetto, S. Graziani, V. Tomasello, A. Pisano, Identification and fractional super-twisting robust control of IPMC actuators. Fract. Calc. Appl. Anal. 18, No 6 (2015), 1358–1378; DOI: 10.1515/fca-2015-0079; https://www.degruyter.com/view/j/fca.2015.18.issue-6/issue-files/fca.2015.18.issue-6.xml.

    Article  MathSciNet  Google Scholar 

  6. Y. Chen, K.L. Moore, B.M. Vinagre, I. Podlubny, Robust PID controller autotuning with a phase shaper. In: 1st IFAC Workshop on Fractional Differentiation and its Applications 2004 (2004), 162–167.

    Google Scholar 

  7. E.F. Colombo, E. Di Gialleonardo, A. Facchinetti, S. Bruni, Active car-body roll control in railway vehicles using hydraulic actuation. Control Eng. Practice 31 (2014), 24–34.

    Article  Google Scholar 

  8. K. Deliparaschos, K. Michail, A. Zolotas, S. Tzafestas, FPGA-based efficient hardware/software co-design for industrial systems with systematic sensor selection. Journal of Elec. Eng. 67, No 3 (2016), 150–159.

    Article  Google Scholar 

  9. E. Gonzalez, L. Dorcak, C.A. Monje, J. Valsa, F. Caluyo, I. Petráš, Conceptual design of a selectable fractional-order differentiator for industrial applications. Fract. Calc. Appl. Anal. 17, No 3 (2014), 697–716; DOI: 10.2478/s13540-014-0195-z; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  Google Scholar 

  10. F. Hassan, A.C. Zolotas, R. Margetts, Improved PID control for tilting trains. In: Students on Applied Engineering (ISCAE), International Conference for IEEE (2016), 269–274.

    Google Scholar 

  11. I.M. Horowitz, Quantitative Feedback Design Theory: (QFT), Vol. 1. Boulder, Colo., QFT Publications (1993).

  12. A. Lamara, G. Colin, P. Lanusse, A. Charlet, D. Nelson-Gruel, Y. Chamaillard, Pollutant reduction of a turbocharged diesel engine using a decentralized MIMO CRONE controller. Fract. Calc. Appl. Anal. 18, No 2 (2015), 307–332; DOI: 10.1515/fca-2015-0021; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  13. P. Lanusse, J. Sabatier, and A. Oustaloup, Extension of PID to fractional orders controllers: a frequency-domain tutorial presentation. IFAC Proceedings 47, No 3 (2014), 7436–7442.

    Google Scholar 

  14. J.T. Machado, F. Mainardi, and V. Kiryakova, Fractional calculus: Quo Vadimus? (Where are we going?). Fract. Calc. Appl. Anal., 18, No 2 (2015), 201–218; DOI: 10.1515/fca-2015-0031; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  15. F. Merrikh-Bayat, Fractional-order unstable pole-zero cancellation in linear feedback systems. J. of Proc. Control 23, No 6 (2013), 817–825.

    Article  Google Scholar 

  16. C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media (2010).

    Book  Google Scholar 

  17. C.A. Monje, B.M. Vinagre, V. Feliu-Batlle, Y. Chen, Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice 16, No 7 (2008), 798–812.

    Article  Google Scholar 

  18. C.A. Monje, B.M. Vinagre, A.J. Calderón, V. Feliu-Batlle, Y. Chen, Auto-tuning of fractional lead-lag compensators. IFAC Proceedings 38, No 1 (2005), 319–324.

    Google Scholar 

  19. K. Moskvitch, The trouble with trying to make trains go faster. In: BBC Future (2014), http://www.bbc.com/future/story/20140813-the-challenge-to-make-trains-fast.

    Google Scholar 

  20. G. Obinata, B.D.O. Anderson, Model Reduction for Control System Design. Springer Verlag, New York (2001).

    Book  Google Scholar 

  21. A. Orvnäs, On active secondary suspension in rail vehicles to improve ride comfort. Doctoral Thesis, KTH, Sweden (2011).

    Google Scholar 

  22. A. Oustaloup, P. Melchior, P. Lanusse, O. Cois, F. Dancla, The CRONE toolbox for Matlab. In: Computer-Aided Control System Design (CACSD 2000), IEEE International Symposium (2000), 190–195.

    Google Scholar 

  23. A. Oustaloup, Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. IEEE Trans. on Circuits and Systems 28, No 10 (1981), 1007–1009.

    Article  Google Scholar 

  24. J.T. Pearson,, R.M. Goodall, I. Pratt, Control system studies of an active anti-roll bar tilt system for railway vehicles. Proc. of the Institution of Mechanical Engineers, Part F: J. of Rail and Rapid Transit 212, No 1 (1998), 43–60.

    Article  Google Scholar 

  25. I. Petráš, Tuning and implementation methods for fractional-order controllers. Fract. Calc. Appl. Anal. 15, No 2 (2012), 282–303; DOI: 10.2478/s13540-012-0021-4; https://www.degruyter.com/view/j/fca.2012.15.issue-2/issue-files/fca.2012.15.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  26. M.S. Tavazoei, Time response analysis of fractional-order control systems: A survey on recent results. Fract. Calc. Appl. Anal. 17, No 2 (2014), 440–461; DOI: 10.2478/s13540-014-0179-z; https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  27. I. Petráš, B. Vinagre, Practical application of digital fractional-order controller to temperature control. Acta Montanistica Slovaca 7, No 2 (2002), 131–137.

    Google Scholar 

  28. I. Petráš, The fractional-order controllers: Methods for their synthesis and application. arXiv Preprint Math/ 0004064 (2000).

  29. I. Podlubny, Fractional-order systems and PIλDmu-controllers. IEEE Transaction on Automatic Control 44, No 1 (1999), 208–214.

    Article  Google Scholar 

  30. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  31. I.E. Pratt, Active suspension applied to railway trains. PhD Dissertation, Loughborough University of Technology (1996).

    Google Scholar 

  32. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2. Wiley, New York (2007).

  33. M.S. Tavazoei, M. Haeri, Chaos control via a simple fractional-order controller. Physics Letters A 372, No 6 (2008), 798–807.

    Article  Google Scholar 

  34. R. Vilanova, A. Visioli, PID Control in the Third Millennium. Springer, London (2012).

    Book  Google Scholar 

  35. B.M. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3, No 3 (2000), 231–248.

    MathSciNet  MATH  Google Scholar 

  36. D. Xue, C. Zhao, Y. Chen, A modified approximation method of fractional order system. In: International Conference on Mechatronics and Automation, IEEE (2006), 1043–1048.

    Google Scholar 

  37. Z. Yang, J. Zhang, Z. Chen, B. Zhang, Semi-active control of high-speed trains based on fuzzy PID control. Procedia Engineering 15 (2011), 521–525.

    Article  Google Scholar 

  38. R. Zhou, A. Zolotas, R. Goodall, Integrated tilt with active lateral secondary suspension control for high speed railway vehicles. Mechatronics 21 (2011), 1108–1122.

    Article  Google Scholar 

  39. A.C. Zolotas, J. Wang, R.M. Goodall, Reduced-order robust tilt control design for high-speed railway vehicles. Vehicle System Dynamics 46, No S1 (2008), 995–1011.

    Article  Google Scholar 

  40. A.C. Zolotas, R.M. Goodall, Advanced control strategies for tilting railway vehicles. UKACC Internat. Conference on Control, University of Cambridge (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilah Hassan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, F., Zolotas, A. Impact of Fractional Order Methods on Optimized Tilt Control for Rail Vehicles. FCAA 20, 765–789 (2017). https://doi.org/10.1515/fca-2017-0039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0039

MSC 2010

Key Words and Phrases

Navigation