Skip to main content
Log in

An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we shall review an approach by which we can seek higher order time discretisation schemes for solving time fractional partial differential equations with nonsmooth data. The low regularity of the solutions of time fractional partial differential equations implies standard time discretisation schemes only yield first order accuracy. To obtain higher order time discretisation schemes when the solutions of time fractional partial differential equations have low regularities, one may correct the starting steps of the standard time discretisation schemes to capture the singularities of the solutions. We will consider these corrections of some higher order time discretisation schemes obtained by using Lubich’s fractional multistep methods, L1 scheme and its modification, discontinuous Galerkin methods, etc. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cao, T. Herdman, Y. Xu, A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41 (2003), 364–381.

    MathSciNet  MATH  Google Scholar 

  2. J.X. Cao, C.P. Li, Y. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18, No 3 (2015), 735–761; DOI: 10.1515/fca-2015-0045; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.

    MathSciNet  MATH  Google Scholar 

  3. W. Cao, F. Zeng, Z. Zhang, G.E. Karniadakis, Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38 (2016), A3070–A3093.

  4. F. Chen, Q. Xu, J.S. Hesthaven, A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293 (2015), 157–172.

    MathSciNet  Google Scholar 

  5. S. Chen, J. Shen, L.-L. Wang, Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp. 85 (2016), 1603–1638.

    MathSciNet  MATH  Google Scholar 

  6. X. Chen, F. Zeng, G.E. Karniadakis, A tunable finite difference method for fractional differential equations with non-smooth solutions. Comput. Methods Appl. Mech. Engrg. 318 (2017), 193–214.

    MathSciNet  MATH  Google Scholar 

  7. E. Cuesta, C. Lubich, C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75 (2006), 673–696.

    MathSciNet  MATH  Google Scholar 

  8. W. Deng, J.S. Hesthaven, Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT 55 (2015), 967–985.

    MathSciNet  MATH  Google Scholar 

  9. K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order. Electr. Trans. on Numer. Anal. 5 (1997), 1–6.

    MathSciNet  MATH  Google Scholar 

  10. K. Diethelm, Generalized compound quadrature formulae for finite part integral. IMA J. of Numer. Anal. 17 (1997), 479–493.

  11. K. Diethelm, N.J. Ford, A.D. Freed, Detailed error analysis for a fractional Adams method. Numer. Algorithms 36 (2004), 31–52.

    MathSciNet  MATH  Google Scholar 

  12. K. Diethelm, J.M. Ford, N.J. Ford, M. Weilbeer, Pitfalls in fast numerical solution of fractional differential equations. J. Comput. Appl. Math. 186 (2006), 482–503.

    MathSciNet  MATH  Google Scholar 

  13. S. Esmaeili, M. Shamsi, and Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput. Math. Appl. 62 (2011), 918–929.

    MathSciNet  MATH  Google Scholar 

  14. N. Ford, M. Morgado, M. Rebelo, Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, No 4 (2013), 874–891; DOI: 10.2478/s13540-013-0054-3; https://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  15. N.J. Ford, K. Pal, Y. Yan, An algorithm for the numerical solution of space-fractional partial differential equations. Comput. Methods in Appl. Math. 15 (2015), 497–514.

    MathSciNet  MATH  Google Scholar 

  16. N.J. Ford, J. Xiao, Y. Yan, Stability of a numerical method for a space-time-fractional telegraph equation. Comput. Methods in Appl. Math. 12 (2012), 1–16.

    MathSciNet  MATH  Google Scholar 

  17. N.J. Ford, J. Xiao, Y. Yan, A finite element method for time-fractional partial differential equations. Fract. Calc. Appl. Anal. 14, No 3 (2011), 454–474; DOI: 10.2478/s13540-011-0028-2; https://www.degruyter.com/view/j/fca.2011.14.issue-3/issue-files/fca.2011.14.issue-3.xml.

    MathSciNet  MATH  Google Scholar 

  18. G.-H. Gao, Z.-Z. Sun, H.-W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259 (2014), 33–50.

    MathSciNet  MATH  Google Scholar 

  19. B. Jin, R. Lazarov, D. Sheen, Z. Zhou, Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19, No 1 (2016), 69–93; DOI: 10.1515/fca-2016-0005; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  20. B. Jin, R. Lazarov, and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2016), A146–A170.

  21. B. Jin, R. Lazarov, Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. of Numer. Anal. 36 (2016), 197–221.

    MathSciNet  MATH  Google Scholar 

  22. B. Jin, B. Li, Z. Zhou, An analysis of the Crank-Nicolson method for subdiffusion. IMA J. of Numer. Anal., In press (2017), arXiv:1607.06948.

    Google Scholar 

  23. B. Jin, B. Li, Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations. Preprint (2017), arXiv:1703.08808.

    Google Scholar 

  24. Z. Li, Z. Liang, Y. Yan, High-order numerical methods for solving time fractional partial differential equations. J. Sci. Comput. 71 (2017), 785–803.

    MathSciNet  MATH  Google Scholar 

  25. H.F. Li, J.X. Cao, C.P. Li, Higher-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III). J. of Comput. and Appl. Math. 299 (2016), 159–175.

    MathSciNet  MATH  Google Scholar 

  26. C. Li, H. Ding, Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38 (2014), 3802–3821.

    MathSciNet  MATH  Google Scholar 

  27. C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383–406; DOI: 10.2478/s13540-012-0028-x; https://www.degruyter.com/view/j/fca.2012.15.issue-3/issue-files/fca.2012.15.issue-3.xml.

    MathSciNet  MATH  Google Scholar 

  28. Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007), 1533–1552.

    MathSciNet  MATH  Google Scholar 

  29. C. Lv, C. Xu, Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38 (2016), A2699–A2724.

  30. C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986), 704–719.

    MathSciNet  MATH  Google Scholar 

  31. C. Lubich, Convolution quadrature and discretized operational calculus, I. Numer. Math. 52 (1988), 129–145.

    MathSciNet  MATH  Google Scholar 

  32. C. Lubich, Convolution quadrature revisited. BIT 44 (2004), 503–514.

    MathSciNet  MATH  Google Scholar 

  33. C. Lubich, I.H. Sloan, V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65 (1996), 1–17.

    MathSciNet  MATH  Google Scholar 

  34. Z. P. Mao, J. Shen, Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307 (2016), 243–261.

    MathSciNet  MATH  Google Scholar 

  35. W. McLean, K. Mustapha, Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293 (2015), 201–217.

    MathSciNet  MATH  Google Scholar 

  36. W. McLea, K. Mustapha, A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105 (2007), 481–510.

    MathSciNet  Google Scholar 

  37. K. Mustapha, Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130 (2015), 497–516.

    MathSciNet  MATH  Google Scholar 

  38. K. Mustapha, B. Abdallah, K.M. Furati, A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52 (2014), 2512–2529.

    MathSciNet  MATH  Google Scholar 

  39. K. Mustapha, W. Mclean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51 (2013), 491–515.

    MathSciNet  MATH  Google Scholar 

  40. K. Mustapha, D. Schötzau, Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34 (2014), 1426–1446.

    MathSciNet  MATH  Google Scholar 

  41. K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York (1974).

    MATH  Google Scholar 

  42. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  43. J. Quintana-Murillo, S.B. Yuste, A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. The European Phys. J. Special Topics 222 (2013), 1987–1998.

    Google Scholar 

  44. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011), 426–447.

    MathSciNet  MATH  Google Scholar 

  45. M. Stynes, Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1554–1562; DOI: 10.1515/fca-2016-0080; https://www.degruyter.com/view/j/fca.2016.19.issue-6/issue-files/fca.2016.19.issue-6.xml.

    MathSciNet  MATH  Google Scholar 

  46. M. Stynes, E. O’Riordan, J.L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55 (2017), 1057–1079.

    MathSciNet  MATH  Google Scholar 

  47. Z.-Z. Sun, X. Wu, A fully discrete scheme for a diffusion wave system. Appl. Numer. Math. 56 (2011), 193–209.

    MathSciNet  MATH  Google Scholar 

  48. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2007).

    MATH  Google Scholar 

  49. M. Weilbeer, Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background. Dissertation, Technischen Universitat Braunschweig (2005).

    MATH  Google Scholar 

  50. Y. Xing, Y. Yan, A higher order numerical method for time fractional partial differential equations with nonsmooth data. Submitted to: J. Comput. Phys. (2017).

    Google Scholar 

  51. Y. Yan, K. Pal, N.J. Ford, Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54 (2014), 555–584.

    MathSciNet  MATH  Google Scholar 

  52. Y. Yan, M. Khan, N.J. Ford, An analysis of the modified L1 scheme for the time-fractional partial differential equations with nonsmooth data. Submitted to: SIAM J. on Numerical Analysis (2016).

    Google Scholar 

  53. Y. Yang, Y. Yan, N.J. Ford, Some time stepping methods for fractional diffusion problems with nonsmooth data. Comput. Methods in Appl. Math. (2017), DOI: doi.org/10.1515/cmam-2017-0037. In press (2017).

    Google Scholar 

  54. Y. Yu, P. Perdikaris, G.E. Karniadakis, Fractional modeling of viscoelasticity in 3d cerebral arteries and aneurysms. J. Comput. Phys. 323 (2016), 219–242.

    MathSciNet  MATH  Google Scholar 

  55. S.B. Yuste, Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216 (2006), 264–274.

    MathSciNet  MATH  Google Scholar 

  56. S.B. Yuste, J. Quintana-Murillo, Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. Numer. Algor. 71 (2016), 207–228.

    MathSciNet  MATH  Google Scholar 

  57. M. Zayernouri, M. Ainsworth, G.E. Karniadakis, A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Engrg. 283 (2015), 1545–1569.

    MathSciNet  MATH  Google Scholar 

  58. M. Zayernouri, A. Matzavinos, Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system. J. Comput. Phys. 317 (2016), 1–14.

    MathSciNet  MATH  Google Scholar 

  59. M. Zayernouri, G.E. Karniadakis, Fractional spectral collocation method. SIAM J. Sci. Comput. 36 (2014), A40–A62.

  60. F. Zeng, Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. J. Sci. Comput. 65 (2015), 411–430.

    MathSciNet  MATH  Google Scholar 

  61. F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35 (2013), A2976–A3000.

  62. F. Zeng, C. Li, F. Liu, I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37 (2015), A55–A78.

  63. F. Zeng, Z. Zhang, and G.E. Karniadakis, A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37 (2015), A2710–A2732.

  64. F. Zeng, Z. Zhang, G.E. Karniadakis, Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput.Phys. 307 (2016), 15–33.

    MathSciNet  MATH  Google Scholar 

  65. F. Zeng, Z. Zhang, and G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions. Preprint (2017), arXiv: 1701.00996.

    Google Scholar 

  66. Y.-N. Zhang, Z.-Z. Sun, H.-L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265 (2014), 195–210.

    MathSciNet  MATH  Google Scholar 

  67. Z. Zhang, F. Zeng, G.E. Karniadakis, Optimal error estimates for spectral Petrov-Galerkin and collocation methods for initial value problems for fractional differential equations. SIAM J. Numer. Anal. 53 (2015), 2074–2096.

    MathSciNet  MATH  Google Scholar 

  68. M. Zheng, F. Liu, V. Anh, I. Turner, A high order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Modelling 40 (2016), 4970–4985.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neville J. Ford.

Additional information

Dedicated to the 20th anniversary of FCAA and 65th anniversary of Professor Virginia Kiryakova

Also, to the Memory of Christopher TH Baker (1939-2017)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ford, N.J., Yan, Y. An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. FCAA 20, 1076–1105 (2017). https://doi.org/10.1515/fca-2017-0058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0058

MSC 2010

Key Words and Phrases

Navigation