Skip to main content
Log in

On the maximum principle for a time-fractional diffusion equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we discuss the maximum principle for a time-fractional diffusion equation

$$\partial _t^\alpha u\left( {x,t} \right) = \sum\limits_{i,j = 1}^n {{\partial _i}\left( {{a_{ij}}\left( x \right){\partial _j}u\left( {x,t} \right)} \right) + c\left( x \right)u\left( {x,t} \right)} + F\left( {x,t} \right),t >0,x \in \Omega \subset {^n},$$

with the Caputo time-derivative of the order α ∈ (0, 1) in the case of the homogeneous Dirichlet boundary condition. Compared to the already published results, our findings have two important special features. First, we derive a maximum principle for a suitably defined weak solution in the fractional Sobolev spaces, not for the strong solution. Second, for the non-negative source functions F = F(x, t) we prove the non-negativity of the weak solution to the problem under consideration without any restrictions on the sign of the coefficient c = c(x) by the derivative of order zero in the spatial differential operator. Moreover, we prove the monotonicity of the solution with respect to the coefficient c = c(x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Al-Refai, Yu. Luchko, Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 17, No 2 (2014), 483–498; DOI: 10.2478/s13540-014-0181-5; https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  2. M. Al-Refai, Yu. Luchko, Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives. Appl. Math. and Comput. 257 (2015), 40–51.

    MathSciNet  MATH  Google Scholar 

  3. M. Al-Refai, Yu. Luchko, Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications. Analysis 36 (2016), 123–133.

    Article  MathSciNet  Google Scholar 

  4. S.D. Eidelman and A.N. Kochubei, Cauchy problem for fractional diffusion equations. J. Diff. Equat. 199 (2004), 211–255.

    Article  MathSciNet  Google Scholar 

  5. R. Gorenflo, Yu. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18, No 3 (2015), 799–820; DOI: 10.1515/fca-2015-0048; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  6. A.N. Kochubei, Fractional-order diffusion. Diff. Equations 26 (1990), 485–492.

    MATH  Google Scholar 

  7. A.N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integr. Equat. and Operator Theory 71 (2011), 583–600.

    Article  MathSciNet  Google Scholar 

  8. Y. Liu, W. Rundell, M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19, No 4 (2016), 888–906; DOI: 10.1515/fca-2016-0048; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  9. Z. Liu, Sh. Zeng, Y. Bai, Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188–211; DOI: 10.1515/fca-2016-0011; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  10. Yu. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351 (2009), 218–223.

    Article  MathSciNet  Google Scholar 

  11. Yu. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12 (2009), 409–422; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  12. Yu. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59 (2010), 1766–1772.

    Article  MathSciNet  Google Scholar 

  13. Yu. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538–548.

    Article  MathSciNet  Google Scholar 

  14. Yu. Luchko, M. Yamamoto, General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 676–695; DOI: 10.1515/fca-2016-0036; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  15. R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16 (2014), 24128–24164.

    Article  Google Scholar 

  16. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983.

    Book  Google Scholar 

  17. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations. Springer, Berlin, 1999.

    MATH  Google Scholar 

  18. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011), 426–447.

    Article  MathSciNet  Google Scholar 

  19. W. Walter, On the strong maximum principle for parabolic differential equations. Proc. Edinb. Math. Soc. 29 (1986), 93–96.

    Article  MathSciNet  Google Scholar 

  20. H. Ye, F. Liu, V. Anh, I. Turner, Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations. Appl. Math. Comput. 227 (2014), 531–540.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Luchko.

Additional information

Dedicated to Professor Virginia Kiryakova on the occasion of her 65th birthday and the 20th anniversary of FCAA

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchko, Y., Yamamoto, M. On the maximum principle for a time-fractional diffusion equation. FCAA 20, 1131–1145 (2017). https://doi.org/10.1515/fca-2017-0060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0060

MSC 2010

Key Words and Phrases

Navigation