Skip to main content
Log in

A note on short memory principle of fractional calculus

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, from the classical short memory principle under Grünwald-Letnikov definition, several novel short memory principles are presented and investigated. On one hand, the classical principle is extended to Riemann-Liouville and Caputo cases. On the other hand, a special kind of principles are formulated by introducing a discrete argument instead of the continuous time, resulting in principles with fixed memory length or fixed memory step. Apart from these, several interesting properties of the proposed principles are revealed profoundly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Abdelouahab, N.E. Hamri, The Grünwald-Letnikov fractional-order derivative with fixed memory length. Mediterranean J. of Mathematics. 13 (2016), 557–572; 10.1007/s00009-015-0525-3.

    Article  MathSciNet  Google Scholar 

  2. M. Abedini, M.A. Nojoumian, H. Salarieh, A. Meghdari, Model reference adaptive control in fractional order systems using discrete-time approximation methods. Commun. Nonlin. Sci. Numer. Simul. 25, No 1-3 (2015), 27–40; 10.1016/j.cnsns.2014.11.012.

    Article  MathSciNet  Google Scholar 

  3. N. Aguila-Camacho, M.A. Duarte-Mermoud, J.A. Gallegos, Lyapunov functions for fractional order systems. Commun. Nonlin. Sci. Numer. Simul. 19, No 9 (2014), 2951–2957; 10.1016/j.cnsns.2014.01.022.

    Article  MathSciNet  Google Scholar 

  4. D. Bertaccini, F. Durastante, Solving mixed classical and fractional partial differential equations using short-memory principle and approximate inverses. Numerical Algorithms. 74, No 4 (2016), 1061–1082; 10.1007/s11075-016-0186-8.

    Article  MathSciNet  Google Scholar 

  5. W.H. Deng, Short memory principle and a predictor-corrector approach for fractional differential equations. J. of Comput. and Appl. Math. 206 (2007), 174–188; 10.1016/j.cam.2006.06.008.

    Article  MathSciNet  Google Scholar 

  6. D.S. Ding, D.L. Qi, Q. Wang, Non-linear Mittag-Leffler stabilisation of commensurate fractional-order non-linear systems. IET Control Theory & Applications. 9, No 5 (2014), 681–690; 10.1049/iet-cta.2014.0642.

    Article  MathSciNet  Google Scholar 

  7. B. Du, Y.Q. Chen, Y.H. Wei, S.S. Cheng, Y. Wang, Discussion on extreme points with fractional order derivatives. 35th Chinese Control Conference (CCC 2016). July 27-29, (2016), Chengdu, China; 10510–10515; 10.1109/ChiCC.2016.7555022.

    Chapter  Google Scholar 

  8. G. Fernandez-Anaya, G. Nava-Antonio, J. Jamous-Galante, R. Muñoz-Vega, E.G. Hernández-Martínez, Lyapunov functions for a class of nonlinear systems using Caputo derivative. Commun. Nonlin. Sci. Numer. Simul. 43 (2017), 91–99; 10.1016/j.cnsns.2016.06.031.

    Article  MathSciNet  Google Scholar 

  9. Z. Liao, C. Peng, Y. Wang, Subspace identification in time-domain for fractional order systems based on short memory principle. J. of Applied Sciences. 29, No 2 (2011), 209–215; 10.3969/j.issn.0255-8297.2011.02.015.

    Google Scholar 

  10. S. Liu, X. Wu, X.F. Zhao, W. Jiang, Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dynamics. 86, No 1 (2016), 65–71; 10.1007/s11071-016-2872-4.

    Article  MathSciNet  Google Scholar 

  11. J.A.T. Machado, V. Kiryakova, F. Mainardi, A poster about the recent history of fractional calculus. Fract. Calc. Appl. Anal. 13, No 3 (2010), 329–334; at: http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  12. J.A.T. Machado, F. Mainardi, V. Kiryakova, T. Atanacković, Fractional Calculus: d’où venons-nous? que sommes-nous? où allons-nous? (in English: where do we come from? what are we? where are we going?). Fract. Calc. Appl. Anal. 19, No 5 (2016), 1074–1104; 10.1515/fca-2016-0059; https://www.degruyter.com/view/j/fca.2016.19.issue-5/fca-2016-0059/fca-2016-0059.xml

    Article  MathSciNet  Google Scholar 

  13. K. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, San Diego (1993).

    MATH  Google Scholar 

  14. I. Podlubny, Numerical solution of ordinary fractional differential equations by the fractional difference method. Advances in Difference Equations (1997), 507–516.

    MATH  Google Scholar 

  15. I. Podlubny, Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Eqnations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  16. I. Podlubny, Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3, No 4 (2000), 359–386; http://www.math.bas.bg/∼fcaa

    MathSciNet  MATH  Google Scholar 

  17. I. Podlubny, A. Chechkin, T. Skovranek, Y.Q. Chen, B.M. Vinagre, Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. of Computational Physics. 228, No 8 (2009), 3137–3153; 10.1016/j.jcp.2009.01.014.

    Article  MathSciNet  Google Scholar 

  18. I. Podlubny, T. Skovranek, B.M. Vinagre, I. Petráš, V. Verbitsky, Y.Q. Chen, Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos. Trans. Royal Soc. A. 371, 1990 (2013); 10.1098/rsta.2012.0153.

    Google Scholar 

  19. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993).

    MATH  Google Scholar 

  20. V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations. Blackie & Son, London (1931).

    Google Scholar 

  21. B.X. Wang, J.G. Jian, H. Yu, Adaptive synchronization of fractional-order memristor-based Chua’s system. Systems Sci. & Control Engin. 2 (2014), 291–296; 10.1080/21642583.2014.900656.

    Article  Google Scholar 

  22. Y.H. Wei, Y.Q. Chen, S.S. Cheng, Y. Wang, Completeness on the stability criterion of fractional order LTI systems. Fract. Calc. Appl. Anal. 20, No 1 (2017), 159–172; 10.1515/fca-2017-0008.https://www.degruyter.com/view/j/fca.2017.20.issue-1/fca-2017-0008/fca-2017-0008.xml

    Article  MathSciNet  Google Scholar 

  23. Y.F. Xu, Z.M. He, The short memory principle for solving Abel differential equation of fractional order. Computers & Math. with Appl. 62, No 12 (2011), 4796–4805; 10.1016/j.camwa.2011.10.071.

    Article  MathSciNet  Google Scholar 

  24. Q. Yang, D.L. Chen, T.B. Zhao, Y.Q. Chen, Fractional calculus in image processing: a review. Fract. Calc. Appl. Anal. 19, No 5 (2016), 1222–1249; 10.1515/fca-2016-0063.https://www.degruyter.com/view/j/fca.2016.19.issue-5/fca-2016-0063/fca-2016-0063.xml

    Article  MathSciNet  Google Scholar 

  25. C. Yin, Y.H. Cheng, Y.Q. Chen, B. Stark, S.M. Zhong, Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dynamics. 82, No 1-2 (2015), 39–52; 10.1007/s11071-015-2136-8.

    Article  MathSciNet  Google Scholar 

  26. Y. Zou, S.E. Li, B. Shao, B.J. Wang, State-space model with non-integer order derivatives for Lithium-ion battery. Applied Energy. 161 (2016), 330–336; 10.1016/j.apenergy.2015.10.025.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiheng Wei.

Additional information

The work described in this paper was fully supported by the National Natural Science Foundation of China (61573332, 61601431), the Fundamental Research Funds for the Central Universities (WK2100100028), the Anhui Provincial Natural Science Foundation (1708085QF141) and the General Financial Grant from the China Postdoctoral Science Foundation (2016M602032).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chen, Y., Cheng, S. et al. A note on short memory principle of fractional calculus. FCAA 20, 1382–1404 (2017). https://doi.org/10.1515/fca-2017-0073

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0073

MSC 2010

Key Words and Phrases

Navigation