Skip to main content
Log in

Caputo-Hadamard Fractional Differential Equations in Banach Spaces

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This article deals with some existence results for a class of Caputo–Hadamard fractional differential equations. The results are based on the Mönch’s fixed point theorem associated with the technique of measure of noncompactness. Two illustrative examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbas, M. Benchohra, M. A. Darwish, New stability results for partial fractional differential inclusions with not instantaneous impulses. Fract. Calc. Appl. Anal. 18, No 1 (2015), 172–191; DOI: 10.1515/fca- 2015-0012; https://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  2. S. Abbas, M. Benchohra, J. Graef and J. Henderson, Implicit Fractional Differential and Integral Equations; Existence and Stability. De Gruyter, Berlin, 2018.

    Book  Google Scholar 

  3. S. Abbas, M. Benchohra and G.M. N’Guérékata, Topics in Fractional Differential Equations. Springer, New York, 2012.

    Book  Google Scholar 

  4. S. Abbas, M. Benchohra and G.M. N’Guérékata, Advanced Fractional Differential and Integral Equations. Nova Sci. Publ., New York, 2015.

    MATH  Google Scholar 

  5. S. Abbas, M. Benchohra and A. Petrusel, Ulam stabilities for the Darboux problem for partial fractional differential inclusions via Picard operators. Electron. J. Qual. Theory Differ. Equ. 1 (2014), 1–13.

    Article  Google Scholar 

  6. S. Abbas, M. Benchohra, A. Petrusel, Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory. Fract. Calc. Appl. Anal. 20, No 2 (2017), 384–398; DOI: 10.1515/fca- 2017-0020; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  7. S. Abbas, M. Benchohra and S. Sivasundaram, Ulam stability for partial fractional differential inclusions with multiple delay and impulses via Picard operators. Nonlinear Stud. 20, No 4 (2013), 623–641.

    MathSciNet  MATH  Google Scholar 

  8. B. Ahmad, and R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions. Fract. Calc. Appl. Anal. 21, No 2 (2018), 423–441; DOI: 10.1515/fca-2018-0024; https://www.degruyter.com/view/j/fca.2018.21.issue-2/issue-files/fca.2018.21.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  9. J.M. Ayerbee Toledano, T. Dominguez Benavides, G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory. Ser. Operator Theory, Advances and Applications Vol. 99, Birkhäuser, Basel- Boston-Berlin, 1997.

  10. J. Bana`s and K. Goebel, Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York, 1980.

    Google Scholar 

  11. M. Benchohra, J. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces. Commun. Appl. Anal. 12, No 4 (2008), 419–428.

    MathSciNet  MATH  Google Scholar 

  12. J.R. Graef, S.R. Grace, E. Tunç, Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives. Fract. Calc. Appl. Anal. 20, No 1 (2017), 71–87; DOI: 10.1515/fca-2017-0004; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  13. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.

    Book  Google Scholar 

  14. A.A. Kilbas, Hadamard-type fractional calculus. J. Korean Math. Soc. 38, No 6 (2001), 1191–1204.

    MathSciNet  MATH  Google Scholar 

  15. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006.

    MATH  Google Scholar 

  16. V. Lakshmikantham, and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space. Eur. J. Pure Appl. Math. 1 (2008), 38–45.

    MathSciNet  Google Scholar 

  17. J.A. Tenreiro Machado, V. Kiryakova, The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20, No 2 (2017), 307–336; DOI: 10.1515/fca-2017-0017; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  18. H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4 (1980), 985–999.

    Article  MathSciNet  Google Scholar 

  19. M.D. Qassim, K.M. Furati, and N.-e. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative. Abstract Appl. Anal. 2012 (2012), Article ID 391062, 17 pp.

  20. M.D. Qassim and N.-e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative. Abstract Appl. Anal. 2013 (2013), Article ID 605029, 12 pp.

  21. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam, 2003; Engl. Trans. from Russian, 1987.

    MATH  Google Scholar 

  22. V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg & Higher Education Press, Beijing, 2010.

    Book  Google Scholar 

  23. M. Yang, Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20, No 3 (2017), 679–705; DOI: 10.1515/fca-2017-0036; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  24. Y. Zhou, Basic Theory of Fractional Differential Equations. World Scientific, Singapore, 2014.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Abbas.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S., Benchohra, M., Hamidi, N. et al. Caputo-Hadamard Fractional Differential Equations in Banach Spaces. FCAA 21, 1027–1045 (2018). https://doi.org/10.1515/fca-2018-0056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0056

MSC 2010

Key Words and Phrases

Navigation