Skip to main content
Log in

Identification for Control of Suspended Objects in Non-Newtonian Fluids

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper proposes a framework for modelling velocity profiles and suspended objects in non-Newtonian fluid environment. A setup is proposed to allow mimicking blood properties and arterial to venous dynamic flow changes. Navier-Stokes relations are employed followed by fractional constitutive equations for velocity profiles and flow. The theoretical analysis is performed under assumptions of steady and pulsatile flow conditions, with incompressible properties. The fractional derivative model for velocity and friction drag effect upon a suspended object are determined. Experimental data from such an object is then recorded in real-time and identification of a fractional order model performed. The model is determined from step input changes during pulsatile flow for velocity in the direction of the flow. Further on, this model can be employed for controller design purposes for velocity and position in pulsatile non-Newtonian fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ala, M. Di Paola, E. Francomano, Y. Li, F. Pinnola, Electrical analogous in viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2513–2527. 10.1016/j.cnsns.2013.11.007.

    Article  Google Scholar 

  2. A. Berglund, J.A. Liddle, Simultaneous positioning and orientation of a single nano-object by flow control: theory and simulations. New J. of Phys. 13 (2011). 10.1063/1.2148627.

  3. D. Yin, H. Wu, C. Cheng, Y. Q. Chen, Fractional order constitutive model of geomaterials under thecondition of triaxial test. Intern. J. for Numer. and Anal. Methods in Geomechanics 37, No8 (2013), 961–972. 10.1002/nag.2139.

    Article  Google Scholar 

  4. I. Birs, C. Muresan, S. Folea, O. Prodan, An experimental nanomedical platform for controller validation on targeted drug delivery, Proc. of the Australian and New Zealand Control Conf., ANZCC. (2017), Gold Coast, Australia. 10.1109/ANZCC.2017.8298504.

    Google Scholar 

  5. I. Birs, C. Muresan, O. Prodan, S. Folea, C.M. Ionescu, Analytical modeling and preliminary fractional order velocity control of a small scale submersible, 2018 SICE Intern. Symp. on Control Systems, SICEISCS Japan (2018), 157–162. 10.23919/SICEISCS.2018.8330170.

    Google Scholar 

  6. D. Copot, R. Magin, R. De Keyser, C.M. Ionescu, Data-driven modelling of drug tissue trapping using anomalous kinetics. Chaos Solitons and Fractals 102 (2017), 441–446. 10.1016/j.chaos.2017.03.031.

    Article  MathSciNet  Google Scholar 

  7. D. Craiem, R. Armentano, A fractional derivative model to describe arterial viscoelasticity. Biorheology 44, No4 (2007), 251–263. 10.1109/IEMBS.2006.259709.

    Google Scholar 

  8. D. Craiem, F. Rojo, J. Atienza, R. Armentano, G. Guinea, Fractionalorder viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53, No17 (2008), 4543–4554. 10.1088/0031-9155/53/17/006.

    Article  Google Scholar 

  9. K. Dekemele, C.M. Ionescu, M. De Doncker, R. De Keyser, Closed loop control of an electromagnetic stirrer in the continuous casting process, Proc. of the European Control Conf.. (2016), Aalborg, Denmark 61–66. 10.1109/ECC.2016.7810264.

    Google Scholar 

  10. A. Dokoumetzidis, R. Magin, P. Macheras, Fractional kinetics in multicompartmental systems. J. Pharmacokinet Pharmacodyn 37 (2010), 507–524. 10.1007/s10928-010-9170-4.

    Article  Google Scholar 

  11. C.M. Ionescu, A memory-based model for blood viscozity. Commun. on Nonlin. Sci. and Numer. Simul. 45 (2017), 29–34. 10.1016/j.cnsns.2016.09.017.

    Article  Google Scholar 

  12. C.M. Ionescu, J.F. Kelly, Fractional calculus for respiratory mechanics: power law impedance, viscoelasticity and tissue heterogeneity. Chaos, Solitons and Fractals 102 (2017), 433–440. 10.1016/j.chaos.2017.03.054.

    Article  MathSciNet  Google Scholar 

  13. C.M. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, J.H.T. Bates, The role of fractional calculus in modelling biological phenomena: a review. Commun. in Nonlin. Sci. and Numer. Simul. 51 (2017), 141–159. 10.1016/j.cnsns.2017.04.001.

    Article  Google Scholar 

  14. C.M. Ionescu, J.A.T. Machado, R. De Keyser, Modeling of the lung impedance using a fractional order ladder network with constant phase elements. IEEE Trans. Biomed. Eng. 5, No1 (2011), 83–89. 10.1109/TBCAS.2010.2077636.

    Google Scholar 

  15. J.F. Kelly, R.J. McGough, Fractal ladder models and power law wave equations. J. of the Acoustical Soc. of America 126, No4 (2009), 2072–2081. 10.1121/1.4783441.

    Article  Google Scholar 

  16. C.D. Langevin, Modeling axisymmetric flow and transport. Ground Water 46, No4 (2008), 579–590.

    Article  Google Scholar 

  17. L.G. Leal, The motion of small particles in non-Newtonian fluids. J. of Non-Newtonian Fluid Mechanics 5 (1979), 33–78. 10.1016/0377-0257(79)85004-1.

    Article  Google Scholar 

  18. Y. Li, Y.Q. Chen, I. Podlubny, Mittag—Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, No8 (2009), 1965–1969. 10.1016/j.camwa.2009.08.019.

    Article  MathSciNet  Google Scholar 

  19. Y. Li, Y.Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-–Leffler stability. Computers and Math. with Appl. 59, No5 (2010), 1810–1821. 10.1016/j.camwa.2009.08.019.

    Article  MathSciNet  Google Scholar 

  20. R. Magin, Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32, No1 (2004), 1–104. 10.1615/CritRevBiomedEng.v32.10.

    Article  Google Scholar 

  21. MAN Diesel & Turbo, Basic Principles of Ship Propulsion. (2012).

    Google Scholar 

  22. R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach.. Wiley-IEEE Press (2001). 10.1002/9781118287422.

    Book  Google Scholar 

  23. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, No4 (2002), 367–386. see at: arXiv:math/0110241.

    MathSciNet  MATH  Google Scholar 

  24. Y. Saadeh, D. Vyas, Nanorobotic applications in medicine: current proposals and designs. Amer. J. Robot. Surg. 1, No1 (2014), 4–11. 10.1166/ajrs.2014.1010.

    Article  Google Scholar 

  25. H. Schiessel, A. Blumen, Mesoscopic pictures of the sol-gel transition: ladder models and fractal networks. Mectromolecules 28 (1995), 4013–4019. 10.1021/ma00115a038.

    Article  Google Scholar 

  26. J. Venugopal, M.P. Prabhakaran, S. Low, A.T. Choon, Y.Z. Zhang, G. Deepika, S. Ramakrishna, Nanotechnology for nanomedicine and delivery of drugs. Curr. Pharm. Des. 14, No8 (2008), 2184–2200. 10.2174/138161208785740180.

    Article  Google Scholar 

  27. B. West, Fractal physiology and the fractional calculus: a perspective. Frontiers in Physiology. (2010). 10.3389/fphys.2010.00012.

    Google Scholar 

  28. C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, J.H.T. Bates, The role of fractional calculus in modeling biological phenomena: A review. Commun. in Nonl. Sci. and Numer. Simul. 51 (2017), 141–159. 10.1016/j.cnsns.2017.04.001.

    Article  MathSciNet  Google Scholar 

  29. D. Yin, W. Zhang, C. Cheng, L. Yi, Fractional time-dependent Bingham model for muddy clay. J. Non-Newtonian Fluid Mech. 187 (2012), 32–35. 10.1016/j.jnnfm.2012.09.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabela Birs.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birs, I., Muresan, C., Copot, D. et al. Identification for Control of Suspended Objects in Non-Newtonian Fluids. FCAA 22, 1378–1394 (2019). https://doi.org/10.1515/fca-2019-0072

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0072

MSC 2010

Key Words and Phrases

Navigation