Skip to main content
Log in

A Fractional Analysis in Higher Dimensions for the Sturm-Liouville Problem

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Al-Gwaiz, Sturm-Liouville Theory and its Applications. Springer Undergraduate Mathematics Series, Springer, London (2008).

    MATH  Google Scholar 

  2. E. Bayro-Corrochano, R. Vallejo, N. Arana-Daniel, Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning. Neurocomputing 67, No 1-4 (2005), 54–105.

    Article  Google Scholar 

  3. F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis. Research Notes in Mathematics. Vol.76, Pitman Advanced Publishing Program, Boston-London-Melbourne (1982).

    MATH  Google Scholar 

  4. R. Delanghe, F. Sommen, V. Souček, Clifford Algebras and Spinor-Valued Functions. A function Theory for the Dirac Operator. Mathematics and its Applications Vol. 53, Kluwer Academic Publishers, Dordrecht etc. (1992).

  5. M. Ferreira, R. Kraußhar, M.M. Rodrigues, N. Vieira, A higher dimensional fractional Borel-Pompeiu formula and a related hypercomplex fractional operator calculus. Math. Methods Appl. Sci. 42, No 10 (2019), 3633–3653.

    Article  MathSciNet  Google Scholar 

  6. M. Ferreira, N. Vieira, Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators. J. Math. Anal. Appl. 447, No 1 (2017), 329–353.

    Article  MathSciNet  Google Scholar 

  7. I.M. Gelfand, S.V. Fomin, Calculus of Variations. Dover Publications Inc, New York (2000).

    MATH  Google Scholar 

  8. R.P. Gilbert, J.L. Buchanan, First Order Elliptic Systems. A Function Theoretic Approach. Mathematics in Science and Engineering. Vol. 163, Academic Press, New York-London etc. (1983).

  9. R.B. Günther, J.W. Lee, Sturm-Liouville Problems. Theory and Numerical Implementation. Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL (2019).

    Google Scholar 

  10. K. Gürlebeck, W. Sprößig, Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice, Wiley, Chichester (1997).

    MATH  Google Scholar 

  11. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Vol. 204, Elsevier, Amsterdam (2006).

  12. M. Klimek, M. Ciesielski, T. Blaszczyk, Exact and numerical solutions of the fractional Sturm-Liouville problem. Fract. Calc. Appl. Anal. 21, No 1 (2018), 45–71; DOI: 10.1515/fca-2018-0004; https://www.degruyter.com/journal/key/FCA/21/1/html.

    Article  MathSciNet  Google Scholar 

  13. M. Klimek, Fractional Sturm-Liouville problem in terms of Riesz derivatives. In: Lecture Notes in Electrical Engineering - Vol. 357, 7th Conference on Non-Integer Order Calculus and Its Applications. Springer, Cham-Heidelberg-New York, etc. (2016), 3–16.

    Google Scholar 

  14. M. Klimek, T. Odzijewicz, A.B. Malinowska, Variational methods for the Sturm–Liouville problem. J. Math. Anal. Appl. 416, No 1 (2014), 402–426.

    Article  MathSciNet  Google Scholar 

  15. M. Klimek, O.P. Argawal, Fractional SturmLiouville problem. Comput. Math. Appl. 66, No 5 (2013), 795–812.

    Article  MathSciNet  Google Scholar 

  16. M. Klimek, O.P. Argawal, On a regular fractional Sturm-Liouville problem with derivatives of order in (0,1). In: Proc. of the 2012 13th International Carpathian Control Conference (ICCC 2012). I. Petrás, I. Podlubny, K. Kostúr, J. Kacur and A. Mojzisová (Eds.), Article No 6228655, 284–289.

  17. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Mathematics in Science and Engineering. Vol. 198, Academic Press, San Diego, CA (1999).

  18. M. Rivero, J.J. Trujillo, M.P. Velasco, A fractional approach to the Sturm-Liouville problem. Centr. Eur. J. Phys. 11, No 10 (2013), 1246–1254.

    Google Scholar 

  19. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York, NY (1993).

    MATH  Google Scholar 

  20. V.E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Nonlinear Physical Science, Springer, Berlin (2010).

    MATH  Google Scholar 

  21. E. Whittaker, G. Robinson, The Calculus of Observations: A Treatise on Numerical Mathematics. Dover, New York (1967).

    MATH  Google Scholar 

  22. C. Xu, H. Liu, W. Cao, F.J. Wenming, Multispectral image edge detection via Clifford gradient. Sci. China, Inf. Sci. 55, No 2 (2012), 260–269.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Ferreira.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M., Manuela Rodrigues, M. & Vieira, N. A Fractional Analysis in Higher Dimensions for the Sturm-Liouville Problem. Fract Calc Appl Anal 24, 585–620 (2021). https://doi.org/10.1515/fca-2021-0026

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0026

MSC 2010

Key Words and Phrases

Navigation