Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 8, 2015

A Novel Design of Circular Edge Bow-Tie Nano Antenna for Energy Harvesting

  • Ahasanul Haque , Ahmed Wasif Reza EMAIL logo and Narendra Kumar
From the journal Frequenz

Abstract

In this study, a novel nano antenna is designed in order to convert the high frequency solar energy, thermal energy or earth re-emitted sun’s energy into electricity. The proposed antenna is gold printed on a SiO2 layer, designed as a circular edge bow-tie with a ground plane at the bottom of the substrate. The Lorentz-Drude model is used to analyze the behavior of gold at the infrared band of frequencies. The proposed antenna is designed by 3D-electromagnetic solver, and analyzed for optimization of metal thickness, gap size, and antenna’s geometrical length. Simulations are conducted in order to investigate the behavior of the antenna illuminated by the circularly polarized plane wave. The numerical simulations are studied for improving the harvesting E-field of the antenna within 5 THz–40 THz frequency range. The proposed antenna offers multiple resonance frequency and better return loss within the frequency bands of 23.2 THz to 27 THz (bandwidth 3.8 THz) and 31 THz to 35.9 THz (bandwidth 4.9 THz). An output electric field of 0.656 V/µm is simulated at 25.3 THz. The best fitted gap size at the feed point is achieved as 50 nm with the substrate thickness of 1.2 µm.

Funding statement: Funding: This research work is supported by the University of Malaya High Impact Research (HIR) Grant (UM.C/HIR/MOHE/ENG/51) sponsored by the Ministry of Higher Education (MOHE), Malaysia and University of Malaya Research Grant (UMRG) scheme (RG286-14AFR).

References

[1] J.-M. Wang and C.-L. Lu, “Design and implementation of a Sun tracker with a dual-axis single motor for an optical sensor-based photovoltaic system,” Sensors, vol. 13, pp. 3157–3168, 2013.10.3390/s130303157Search in Google Scholar PubMed PubMed Central

[2] H. Yu, Q. Yue, J. Zhou, and W. Wang, “A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes,” Sensors, vol. 14, pp. 8740–8755, 2014.10.3390/s140508740Search in Google Scholar PubMed PubMed Central

[3] Y. Yang, J. Yeo, and S. Priya, “Harvesting energy from the counterbalancing (weaving) movement in bicycle riding,” Sensors, vol. 12, pp. 10248–10258, 2012.10.3390/s120810248Search in Google Scholar PubMed PubMed Central

[4] W. C. Brown. In Optimization of the efficiency and other properties of the rectenna element, Microwave Symposium, 1976 IEEE-MTT-S International, 1976; IEEE, pp. 142–144.Search in Google Scholar

[5] J. O. McSpadden, T. Yoo, and K. Chang, “Theoretical and experimental investigation of a rectenna element for microwave power transmission,” IEEE Trans. Microw. Theory Tech., vol. 40, pp. 2359–2366, 1992.10.1109/22.179902Search in Google Scholar

[6] Y.-H. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45-And 5.8-Ghz wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 1784–1789, 2002.10.1109/TMTT.2002.800430Search in Google Scholar

[7] J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett., vol. 10, pp. 3473–3481, 2010.10.1021/nl101606jSearch in Google Scholar PubMed

[8] T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett., vol. 109, pp. 127701, 2012.10.1103/PhysRevLett.109.127701Search in Google Scholar PubMed

[9] W. Gotschy, K. Vonmetz, A. Leitner, and F. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Optics Lett., vol. 21, pp. 1099–1101, 1996.10.1364/OL.21.001099Search in Google Scholar PubMed

[10] J. Kottmann, O. Martin, D. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Optics Exp., vol. 6, pp. 213–219, 2000.10.1364/OE.6.000213Search in Google Scholar PubMed

[11] C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett., vol. 6, pp. 683–688, 2006.10.1021/nl052409ySearch in Google Scholar PubMed

[12] H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett., vol. 6, pp. 827–832, 2006.10.1021/nl060209wSearch in Google Scholar PubMed

[13] M. Bozzetti, G. de Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, In Analysis and design of a solar rectenna, Industrial Electronics (ISIE), 2010 IEEE International Symposium on, 2010; IEEE, pp. 2001–2004.10.1109/ISIE.2010.5637486Search in Google Scholar

[14] M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy, vol. 39, pp. 27–32, 2012.10.1016/j.energy.2011.02.026Search in Google Scholar

[15] G. A. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy, vol. 1, pp. 494–502, 2012.10.1016/j.nanoen.2012.03.002Search in Google Scholar

[16] Z. Ma and G. A. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Solar Energy, vol. 88, pp. 163–174, 2013.10.1016/j.solener.2012.11.023Search in Google Scholar

[17] A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Planar bowtie nanoarray for THz energy detection,” IEEE Trans. Terahertz Sci. Technol., vol. 3, no. 5, pp. 524–531, 2013.10.1109/TTHZ.2013.2271833Search in Google Scholar

[18] M. Hussein, N. F. F. Areed, M. F. O. Hameed, and S. S. A. Obayya, “Design of flower-shaped dipole nano-antenna for energy harvesting,” IET Optoelectron., vol. 8, pp. 167–173, 2014.10.1049/iet-opt.2013.0108Search in Google Scholar

[19] M. Gadalla, M. Abdel-Rahman, and S., A. Design, “Optimization and fabrication of a 28.3 Thz nano-rectenna for infrared detection and rectification,” Sci. Rep., vol. 4, 2014. DOI: 10.1038/srep04270.DOI: 10.1038/srep04270.Search in Google Scholar

[20] Z. Ma and G. A. Vandenbosch, “Systematic full-wave characterization of real-metal nano dipole antennas,” IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 4990–4999, 2013.10.1109/TAP.2013.2271712Search in Google Scholar

[21] R. Bachelot, P. Gleyzes, and A. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Optics Lett., vol. 20, pp. 1924–1926, 1995.10.1364/OL.20.001924Search in Google Scholar PubMed

[22] L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett., vol. 98, pp. 266802, 2007.10.1103/PhysRevLett.98.266802Search in Google Scholar PubMed

[23] D. Derkacs, W. Chen, P. Matheu, S. Lim, P. Yu, and E. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett., vol. 93, pp. 091107, 2008.10.1063/1.2973988Search in Google Scholar

[24] K. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express, vol. 16, pp. 21793–21800, 2008.10.1364/OE.16.021793Search in Google Scholar PubMed

[25] M. I. Stockman, D. J. Bergman, and T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B., vol. 69, pp. 054202, 2004.10.1103/PhysRevB.69.054202Search in Google Scholar

[26] M. Stockman, S. Faleev, and D. Bergman, “Coherently controlled femtosecond energy localization on nanoscale,” Appl. Phys. B., vol. 74, pp. s63–s67, 2002.10.1007/s00340-002-0868-xSearch in Google Scholar

[27] K. E. Trenberth, J. T. Fasullo, and J. Kiehl, “Earth’s global energy budget,” Bull. Am. Meteorol. Soc., vol. 90, pp. 311–323, 2009.10.1175/2008BAMS2634.1Search in Google Scholar

[28] N. Dmitruk, S. Malynych, I. Moroz, and V. Y. Kurlyak, “Optical efficiency of ag and au nanoparticles,” Semiconduct. Phys. Quantum Electron. Optoelectron., vol. 13, pp. 369–373, 2010.10.15407/spqeo13.04.369Search in Google Scholar

[29] P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett., vol. 101, pp. 116805, 2008.10.1103/PhysRevLett.101.116805Search in Google Scholar PubMed

[30] P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett., vol. 94, pp. 017402, 2005.10.1109/QELS.2005.1548687Search in Google Scholar

[31] O. Muskens, V. Giannini, J. Sanchez-Gil, and J. Gomez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett., vol. 7, pp. 2871–2875, 2007.10.1021/nl0715847Search in Google Scholar PubMed

[32] M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon., vol. 3, pp. 287–291, 2009.10.1038/nphoton.2009.46Search in Google Scholar

[33] A. Kumar, K. Hsu, K. Jacobs, P. Ferreira, and N. Fang, “Direct metal nano-imprinting using an embossed solid electrolyte stamp,” Nanotechnology, vol. 22, pp. 155302, 2011.10.1088/0957-4484/22/15/155302Search in Google Scholar PubMed

[34] A. Kumar, K. H. Hsu, P. Chaturvedi, H. Ma, J. Xu, and N. X. Fang. In Fabrication and optical characterization of bowtie antennas, Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, 2008; IEEE, pp. 98–99.10.1109/NANO.2008.36Search in Google Scholar

[35] P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys., vol. 75, pp. 024402, 2012.10.1088/0034-4885/75/2/024402Search in Google Scholar PubMed

Received: 2015-2-19
Published Online: 2015-9-8
Published in Print: 2015-11-1

©2015 by De Gruyter

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2015-0037/html
Scroll to top button