Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2018

Application of Photonic Crystal Ring Resonators for Realizing All Optical Demultiplexers

  • Somaye Serajmohammadi EMAIL logo , Hamed Alipour-Banaei and Farhad Mehdizadeh
From the journal Frequenz

Abstract

Transmission efficiency, quality factor, crosstalk levels and number of output channels are the most crucial parameters in designing optical demultiplexers, suitable for wavelength division multiplexing applications. In this paper we proposed an 8-channel optical demultiplexer based on photonic crystal ring resonator. For performing wavelength selection task we used eight ring resonators. The resonance wavelength of the ring resonators depends on the dimensions of the ring core, therefore we choose eight different values for the lattice constant of the ring resonators core section. The average channel spacing of the structure is about 3 nm the transmission efficiency in most of the channels is equal or more than 99 % except in one channels whose transmission efficiency is 85 %.

References

[1] H. J. R. Dutton. Understanding Optical Communications. Prentice Hall PTR. 1998.Search in Google Scholar

[2] S. John. “Strong localization of photons in certain disordered dielectric superlattices.” Phys. Rev. Lett., vol. 58, pp. 2486–2489. 1987.10.1103/PhysRevLett.58.2486Search in Google Scholar PubMed

[3] D. Liu, Y. Gao, A. Tong, and S. Hu. “Absolute photonic band gap in 2D honeycomb annular photonic crystals.” Phys. Lett., vol. 379, pp. 214–217. 2015.10.1016/j.physleta.2014.11.030Search in Google Scholar

[4] Z. Wu, K. Xie, and H. Yang. “Band gap properties of two-dimensional photonic crystals with rhombic lattice.” Opt. Int. J. Light Electron. Opt., vol. 123, pp. 534–536. 2012.10.1016/j.ijleo.2011.05.020Search in Google Scholar

[5] M. A. Mansouri-Birjandi, A. Tavousi, and M. Ghadrdan. “Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators.” Photonics Nanostructures Fundam. Appl., vol. 21, pp. 44–51. 2016.10.1016/j.photonics.2016.06.002Search in Google Scholar

[6] A. Tavousi, M. A. Mansouri-Birjandi, M. Ghadrdan, and M. Ranjbar-Torkamani. “Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–Drop filtering.” Photonic Netw. Commun., vol. 34, pp. 131–139. 2017.10.1007/s11107-016-0680-xSearch in Google Scholar

[7] B. Saghirzadeh Darki and N. Granpayeh. “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method.” Opt. Commun., vol. 283, pp. 4099–4103. 2010.10.1016/j.optcom.2010.06.013Search in Google Scholar

[8] A. Taalbi, G. Bassou, and M. Youcef Mahmoud. “New design of channel drop filters based on photonic crystal ring resonators.” Opt. Int. J. Light Electron. Opt., vol. 124, pp. 824–827. 2013.10.1016/j.ijleo.2012.01.045Search in Google Scholar

[9] R. Talebzadeh, M. Soroosh, and F. Mehdizadeh. “Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators.” Opt. Appl., vol. 46, pp. 553–564. 2016.Search in Google Scholar

[10] R. Talebzadeh, M. Soroosh, and T. Daghooghi. “A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity.” IETE J. Res, vol. 62, pp. 866–872. 2016.10.1080/03772063.2016.1217175Search in Google Scholar

[11] D. Bernier, X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan. “Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism.” Opt. Express., vol. 16, pp. 17209. 2008.10.1364/OE.16.017209Search in Google Scholar PubMed

[12] K. Venkatachalam, D. S. Kumar, and S. Robinson. “Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer.” Photonic Netw. Commun., vol. 34, pp. 100–110. 2017.10.1007/s11107-016-0675-7Search in Google Scholar

[13] V. Kannaiyan, R. Savarimuthu, and S. K. Dhamodharan. “Performance analysis of an eight channel demultiplexer using a 2D-photonic crystal quasi square ring resonator.” Opto-Electronics Rev, vol. 25, pp. 74–79. 2017.10.1016/j.opelre.2017.05.003Search in Google Scholar

[14] M. Zavvari. “Design of photonic crystal-based demultiplexer with high-quality factor for DWDM applications.” J. Opt. Commun., vol. 0, 2017.10.1515/joc-2017-0058Search in Google Scholar

[15] V. Fallahi, M. Seifouri, S. Olyaee, and H. Alipour-Banaei. “Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators.” Opt. Rev., vol. 24, pp. 605–610. 2017.10.1007/s10043-017-0353-8Search in Google Scholar

[16] Y. Zhang, Y. Zhang, and B. Li. “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals.” Opt. Express., vol. 15, pp. 9287. 2007.10.1364/OE.15.009287Search in Google Scholar

[17] A. Sharkawy, S. Shi, D. W. Prather, and R. A. Soref. “Electro-optical switching using coupled photonic crystal waveguides.” Opt. Express., vol. 10, pp. 1048. 2002.10.1364/OE.10.001048Search in Google Scholar PubMed

[18] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei. “A novel proposal for optical decoder switch based on photonic crystal ring resonators.” Opt. Quantum Electron., vol. 48, pp. 20. 2015.10.1007/s11082-015-0313-0Search in Google Scholar

[19] M. Neisy, M. Soroosh, and K. Ansari-Asl. “All optical half adder based on photonic crystal resonant cavities.” Photonic Netw. Commun., 2017.10.1007/s11107-017-0736-6Search in Google Scholar

[20] F. Cheraghi, M. Soroosh, and G. Akbarizadeh. “An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities.” Superlattices Microstruct, 2017.10.1016/j.spmi.2017.11.017Search in Google Scholar

[21] Y.-P. Yang, K.-C. Lin, I.-C. Yang, K.-Y. Lee, Y.-J. Lin, W.-Y. Lee, and Y.-T. Tsai. “All-optical photonic crystal AND gate with multiple operating wavelengths.” Opt. Commun., vol. 297, pp. 165–168. 2013.10.1016/j.optcom.2013.01.035Search in Google Scholar

[22] Z. Mohebbi, N. Nozhat, and F. Emami. “High contrast all-optical logic gates based on 2D nonlinear photonic crystal.” Opt. Commun, vol. 355, pp. 130–136. 2015.10.1016/j.optcom.2015.06.023Search in Google Scholar

[23] Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba. “Design of ultra compact all-optical {XOR} and {AND} logic gates with low power consumption.” Opt. Commun., vol. 284, pp. 3528–3533. 2011.10.1016/j.optcom.2011.03.069Search in Google Scholar

[24] A. Tavousi, M. A. Mansouri-Birjandi, and M. Saffari. “Successive approximation-like 4-bit full-optical analog-to-digital converter based on kerr-like nonlinear photonic crystal ring resonators.” Phys. E Low-Dimensional Syst. Nanostructures, 2016.10.1016/j.physe.2016.04.007Search in Google Scholar

[25] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi. “Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure.” Appl. Opt., vol. 56, pp. 1799–1806. 2017.10.1364/AO.56.001799Search in Google Scholar PubMed

[26] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi. “All optical 2-bit analog to digital converter using photonic crystal based cavities.” Opt. Quantum Electron, vol. 49, pp. 38. 2017.10.1007/s11082-016-0880-8Search in Google Scholar

[27] B. Youssefi, M. K. Moravvej-Farshi, and N. Granpayeh. “Two bit all-optical analog-to-digital converter based on nonlinear kerr effect in 2D photonic crystals.” Opt. Commun, vol. 285, pp. 3228–3233. 2012.10.1016/j.optcom.2012.02.081Search in Google Scholar

[28] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi. “A novel proposal for all optical analog-to-digital converter based on photonic crystal structures.” IEEE Photonics J, vol. 9, pp. 1–11. 2017.10.1109/JPHOT.2017.2690362Search in Google Scholar

[29] A. Tavousi and M. A. Mansouri-Birjandi. “Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators.” Superlattices Microstruct, 2017.10.1016/j.spmi.2017.11.021Search in Google Scholar

[30] A. Rostami, G. Rostami, M. Dolatyari, and A. Tavousi. “3-D numerical analysis of smith-purcell based terahertz wave radiation excited by effective surface plasmon.” J. Light. Technol, vol. 8724, pp. 1–1. 2015.Search in Google Scholar

[31] A. Tavousi, A. Rostami, G. Rostami, and M. Dolatyari. “Smith-purcell based terahertz frequency multiplier: three dimensional analysis.” in P. Ribeiro and M. Raposo eds., Photoptics 2015, pp. 145–155. Cham: Springer International Publishing. 2016.10.1007/978-3-319-30137-2_9Search in Google Scholar

[32] A. Tavousi, A. Rostami, G. Rostami, and M. Dolatyari. “Proposal for simultaneous two-color smith-purcell terahertz radiation through effective surface plasmon excitation.” IEEE J. Sel. Top. Quantum Electron., vol. 23, 2017.10.1109/JSTQE.2016.2602101Search in Google Scholar

[33] M. A. Mansouri-Birjandi, M. Janfaza, and A. Tavousi. “Flat-band slow light in a photonic crystal slab waveguide by vertical geometry adjustment and selective infiltration of optofluidics.” J. Electron. Mater., vol. 46, pp. 6528–6534. 2017.10.1007/s11664-017-5695-2Search in Google Scholar

[34] A. E. Akosman, M. Mutlu, H. Kurt, and E. Ozbay. “Dual-frequency division de-multiplexer based on cascaded photonic crystal waveguides.” Phys. B Condens. Matter., vol. 407, pp. 4043–4047. 2012.10.1016/j.physb.2012.02.024Search in Google Scholar

[35] H. P. Bazargani. “Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal.” Opt. Commun., vol. 285, pp. 1848–1853. 2012.10.1016/j.optcom.2011.12.002Search in Google Scholar

[36] M. A. Mansouri-Birjandi and M. R. Rakhshani. “A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators.” Opt. Int. J. Light Electron. Opt., vol. 124, pp. 5923–5926. 2013.10.1016/j.ijleo.2013.04.128Search in Google Scholar

[37] A. Rostami, H. A. Banaei, F. Nazari, and A. Bahrami. “An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure.” Opt. Int. J. Light Electron. Opt., vol. 122, pp. 1481–1485. 2011.10.1016/j.ijleo.2010.05.036Search in Google Scholar

[38] K. Venkatachalam, D. S. Kumar, and S. Robinson. “Performance analysis of 2D-photonic crystal based eight channel wavelength division demultiplexer.” Opt. Int. J. Light Electron. Opt., vol. 127, pp. 8819–8826. 2016.10.1016/j.ijleo.2016.06.112Search in Google Scholar

[39] A. Rostami, F. Nazari, H. A. Banaei, and A. Bahrami. “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure.” Photonics Nanostructures Fundam. Appl., vol. 8, pp. 14–22. 2010.10.1016/j.photonics.2009.12.002Search in Google Scholar

[40] M. R. Rakhshani and M. A. Mansouri-Birjandi. “Realization of tunable optical filter by photonic crystal ring resonators.” Opt. Int. J. Light Electron. Opt., vol. 124, pp. 5377–5380. 2013.10.1016/j.ijleo.2013.03.114Search in Google Scholar

[41] R. Talebzadeh, M. Soroosh, Y. S. Kavian, and F. Mehdizadeh. “All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods.” Photonic Netw. Commun., 2017.10.1007/s11107-017-0688-xSearch in Google Scholar

[42] R. Talebzadeh, M. Soroosh, Y. S. Kavian, and F. Mehdizadeh. “Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities.” Opt. Int. J. Light Electron. Opt., vol. 140, pp. 331–337. 2017.10.1016/j.ijleo.2017.04.075Search in Google Scholar

[43] S. Johnson and J. Joannopoulos. “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis.” Opt. Express., vol. 8, pp. 173. 2001.10.1364/OE.8.000173Search in Google Scholar PubMed

[44] H. Alipour-Banaei, M. Jahanara, and F. Mehdizadeh. “T-shaped channel drop filter based on photonic crystal ring resonator.” Opt. Int. J. Light Electron. Opt., vol. 125, pp. 5348–5351. 2014.10.1016/j.ijleo.2014.06.056Search in Google Scholar

[45] A. Taflove. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House. 1995.Search in Google Scholar

[46] S. Marziye Mousavizadeh, M. Soroosh, and F. Mehdizadeh. “Photonic crystal-based demultiplexers using defective resonant cavity.” Optoelectron. Adv. Mater. Rapid Commun., vol. 9, pp. 28–31. 2015.Search in Google Scholar

Received: 2017-11-27
Published Online: 2018-05-15
Published in Print: 2018-08-28

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2017-0272/html
Scroll to top button