Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 17, 2018

NearSense – Advances Towards a Silicon-Based Terahertz Near-Field Imaging Sensor for Ex Vivo Breast Tumour Identification

  • Laven Mavarani EMAIL logo , Philipp Hillger , Thomas Bücher , Janusz Grzyb , Ullrich R. Pfeiffer , Quentin Cassar , Amel Al-Ibadi , Thomas Zimmer , Jean-Paul Guillet , Patrick Mounaix and Gaëtan MacGrogan
From the journal Frequenz

Abstract

Breast Cancer is one of the most frequently diagnosed cancer diseases worldwide, and the most common invasive tumour for women. As with all cancers, early detection plays a major role in reducing the mortality and morbidity rate. Currently, most breast cancers are detected due to clinical symptoms, or by screening mammography. The limitations of these techniques have resulted in research of alternative methods for imaging and detecting breast cancer. Apart from this, it is essential to define precise tumour margins during breast-conserving surgeries to reduce the re-excision rate. This study presents the advances in the development of a silicon-based THz sub-wavelength imager usable in life science applications, especially for tumour margin identification.

Funding statement: This work is part of the project NearSense- A silicon-based terahertz near-field imaging array for ex vivo life-science applications and was funded in the frame of the DFG priority program SPP 1857 ESSENCE (Elektromagnetic Sensors for Life Sciences).

References

Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D. M., Forman D., and Bray F., “Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012,” Int. J. Cancer, vol. 136, no. 5, pp. E359–E386, 2015.10.1002/ijc.29210Search in Google Scholar PubMed

Smith R. A., Andrews K. S., Brooks D., Fedewa S. A., Manassaram-Baptiste D., Saslow D., Brawley O. W, and Wender R. C.. Cancer screening in the states united, 2017: a review of current american cancer society guidelines and current issues in cancer screening. CA: A Cancer J. Clinicians, vol. 67, no. 2, pp. 100–121, 2017.Search in Google Scholar

Stewart B. W. and Wild C. P.. World Cancer Report 2014. International Agency for Research on Cancer. International Agency for Research on Cancer, 2014.Search in Google Scholar

Shtern F.. Digital mammography and related technologies: a perspective from the national cancer institute. Radiology, vol. 183, no. 3, pp. 629–630, 1992.10.1148/radiology.183.3.1584908Search in Google Scholar PubMed

Singletary S. E.. Breast cancer surgery for the 21st century: the continuing evolution of minimally invasive treatments. Minerva Chirurgica, vol. 61, no. 4, pp. 333–352, 2006.Search in Google Scholar

Yang X., Zhao X., Yang K., Liu Y., Liu Y., Fu W., and Luo Y.. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol., vol. 34, no. 10, pp. 810–824, 2016.10.1016/j.tibtech.2016.04.008Search in Google Scholar PubMed

Karpowicz N., Zhong H., Zhang C., Lin K.-I., Hwang J.-S., Xu J., and Zhang X.-C.. Compact continuous-wave subterahertz system for inspection applications. Appl. Phys. Lett., vol. 86, no. 5, p. 054105, 2005.10.1063/1.1856701Search in Google Scholar

Jepsen P. U., Møller U., and Merbold H.. Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Opt. Exp., vol. 15, no. 22, pp. 14717–14737, 2007.10.1364/OE.15.014717Search in Google Scholar

Jin Y.-S., Kim G.-J., Shon C.-H., Jeon S.-G., and Kim J.-I.. Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy. Journal of the Korean Physical Society, vol. 53, no. 4, pp. 1879–1885, 2008.10.3938/jkps.53.1879Search in Google Scholar

Yomogida Y., Sato Y., Nozaki R., Mishina T., and Nakahara J.. Comparative dielectric study of monohydric alcohols with terahertz time-domain spectroscopy. Journal of Molecular Structure, vol. 981, no. 1, pp. 173–178, 2010.10.1016/j.molstruc.2010.08.002Search in Google Scholar

Conti Nibali V. and Havenith M.. New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc., vol. 136, no. 37, pp. 12800–12807, 2014.10.1021/ja504441hSearch in Google Scholar PubMed

Mantsch H. H. and Naumann D.. Terahertz spectroscopy: The renaissance of far infrared spectroscopy. J. Mol. Struct., vol. 964, no. 1, pp. 1–4, 2010.10.1016/j.molstruc.2009.12.022Search in Google Scholar

Siegel P. H.. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Tech., vol. 52, no. 10, pp. 2438–2447, 2004.10.1109/TMTT.2004.835916Search in Google Scholar

Fitzgerald A. J., Wallace V. P., Jimenez-Linan M., Bobrow L., Pye R. J., Purushotham A. D., and Arnone D. D.. Terahertz pulsed imaging of human breast tumors. Radiology, vol. 239, no. 2, pp. 533–540, 2006.10.1148/radiol.2392041315Search in Google Scholar PubMed

Fitzgerald A. J., Pinder S., Purushotham A. D., O’Kelly P., Ashworth P. C., and Wallace V. P.. Classification of terahertz-pulsed imaging data from excised breast tissue. Journal of biomedical optics, vol. 17, no. 1, pp. 0160051–01600510, 2012.10.1117/1.JBO.17.1.016005Search in Google Scholar PubMed

Hao X., Kuang C., Gu Z., Wang Y., Li S., Ku Y., Li Y., Ge J., and Liu X.. From microscopy to nanoscopy via visible light. Light Sci. Appl., vol. 2, no. 10, p. e108, 2013.10.1038/lsa.2013.64Search in Google Scholar

Adam A. J. L.. Review of near-field terahertz measurement methods and their applications. J. Infrared Millimeter Terahertz Waves, vol. 32, no. 8-9, p. 976, 2011.10.1007/s10762-011-9809-2Search in Google Scholar

Chen H.-T., Kersting R., and Cho G.. Terahertz imaging with nanometer resolution. Appli. Phys. Lett., vol. 83, no. 15, pp. 3009–3011, 2003.10.1063/1.1616668Search in Google Scholar

Guillet J.-P., Chusseau L., Adam R., Grosjean T., Penarier A., Baida F., and Charraut D.. Continuous-wave scanning terahertz near-field microscope. Microwave Opt. Technol. Lett., vol. 53, no. 3, pp. 580–582, 2011.10.1002/mop.25754Search in Google Scholar

Grzyb J., Heinemann B., and Pfeiffer U. R.. A 0.55 thz near-field sensor with a μm-range lateral resolution fully integrated in 130 nm sige bicmos. IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3063–3077, 2016.Search in Google Scholar

Grzyb J., Heinemann B., and Pfeiffer U. R.. Solid-state terahertz superresolution imaging device in 130-nm sige bicmos technology. IEEE Trans. Microwave Theory Tech., 2017.10.1109/TMTT.2017.2684120Search in Google Scholar

Hillger P., Jain R., Grzyb J., Mavarani L., Heinemann B., Mac Grogan G., Mounaix P., Zimmer T., and Pfeiffer U.. A 128-pixel 0.56thz sensing array for real-time near-field imaging in 0.13 μm sige bicmos. IEEE International Solid-State Circuits Conference ISSCC, pp. 418-419, 2018.10.1109/ISSCC.2018.8310362Search in Google Scholar

Balacey H., Recur B., Perraud J.-B., Sleiman J. B., Guillet J.-P., and Mounaix P.. Advanced processing sequence for 3-d thz imaging. IEEE Trans. Terahertz Sci. Technol., vol. 6, no. 2, pp. 191–198, 2016.10.1109/TTHZ.2016.2519263Search in Google Scholar

Cassar Q., Al-Ibadi A., Mavarani L., Hillger P., Grzyb J., MacGrogan G., Zimmer T., Pfeiffer U. R, Guillet J.-P., and Mounaix. Contrast analysis of freshly excised malignant and healthy breast tissues in the300 – 600 ghz range. To be published.Search in Google Scholar

Knickerbocker J. U, Patel C. S., Andry P. S., Tsang C. K., Buchwalter L. P., Sprogis E. J., Gan H., Horton R. R., Polastre R. J., Wright S. L., et al. 3-d silicon integration and silicon packaging technology using silicon through-vias. IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1718–1725, 2006.Search in Google Scholar

Received: 2018-1-9
Published Online: 2018-3-17
Published in Print: 2018-3-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2018-0016/html
Scroll to top button