Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 4, 2013

Combination of neutron imaging (NI) and digital image correlation (DIC) to determine intra-ring moisture variation in Norway spruce

  • Christian Lanvermann EMAIL logo , Sergio J. Sanabria , David Mannes and Peter Niemz
From the journal Holzforschung

Abstract

The hygroscopic behavior of wood has a strong influence on its mechanical performance, yet the moisture gradients within the growth ring structure have not been sufficiently investigated. The main challenge is that moisture variations are coupled with strong sample deformation, which complicates the spatial referencing of moist and dry states. In this work, neutron imaging (NI) for the detection of water and digital image correlation (DIC) for the detection of local deformation were combined to calculate the local gravimetric moisture content (MCgrav) and the volumetric moisture content (MCvol) within single growth rings. Specimens of Norway spruce [Picea abies (L.) Karst.] were exposed to an adsorption-desorption cycle, with relative humidity (RH) steps varying from 0% (oven dry) up to 95% RH. After each acclimatization step, neutron transmission and DIC images were acquired. The local deformations determined by DIC were used to assign the corresponding dry density in the undeformed state to the compartment in a moist state and thus to calculate its MC by NI. No significant MC gradients could be found between earlywood (EW) and latewood (LW) within ±0.5% accuracy. However, strong density gradients between EW and LW can be directly correlated with MCvol. It appears that the MC in the cell wall is constant regardless of the particular growth ring position.


Corresponding author: Christian Lanvermann, ETH Zurich, Institute for Building Materials, Woodphysics, Schafmattstrasse 6, 8093 Zurich, Switzerland, e-mail:

The first author financed by the Swiss National Science Foundation (Grant No. 125184). The Building Physics group at EMPA is acknowledged for using the conditioning device. Furthermore, Ms. V. Krackler and Mr. F. Michel are gratefully acknowledged for helping with the experiments at Paul Scherrer Institut, and Dr. Falk Wittel for his contribution in the data evaluation.

References

Badel, É., Perré, P. (2002) Predicting oak wood properties using X-ray inspection: representation, homogenisation and localisation. Part I: digital X-ray imaging and representation by finite elements. Ann. For. Sci. 59:767–776.Search in Google Scholar

Bengtsson, C. (2001) Variation of moisture induced movements in Norway spruce (Picea abies). Ann. For. Sci. 58:568–581.Search in Google Scholar

Boutelje, J.B. (1962) The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity. Holzforschung 16:33–46.10.1515/hfsg.1962.16.2.33Search in Google Scholar

Derome, D., Griffa, M., Koebel, M., Carmeliet, J. (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J. Struct. Biol. 173:180–190.Search in Google Scholar

Donaldson, L. (2008) Microfibril angle: measurement, variation and relationships – a review. IAWA J. 29:345–386.10.1163/22941932-90000192Search in Google Scholar

Dvinskikh, S.V., Henriksson, M., Berglund, L.A., Furó, I. (2011) A multinuclear magnetic resonance imaging (MRI) study of wood with adsorbed water: estimating bound water concentration and local wood density. Holzforschung 65:103–107.10.1515/hf.2010.121Search in Google Scholar

Eder, M., Jungnikl, K., Burgert, I. (2009) A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.). Trees-Struct. Funct. 23:79–84.10.1007/s00468-008-0256-1Search in Google Scholar

Eitelberger, J., Hofstetter, K., Dvinskikh, S.V. (2011a) A multi-scale approach for simulation of transient moisture transport processes in wood below the fiber saturation point. Compos. Sci. Technol. 71:1727–1738.10.1016/j.compscitech.2011.08.004Search in Google Scholar

Eitelberger, J., Svensson, S., Hofstetter, K. (2011b) Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description. Holzforschung 65:337–342.10.1515/hf.2011.041Search in Google Scholar

Eitner, U., Köntges, M., Brendel, R. (2010) Use of digital image correlation technique to determine thermomechanical deformations in photovoltaic laminates: measurements and accuracy. Sol. Energy Mater. Sol. C 94:1346–1351.Search in Google Scholar

Evans, R. (1994) Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 48:168–172.10.1515/hfsg.1994.48.2.168Search in Google Scholar

Evans, R., Hughes, M., Menz, D. (1999) Microfibril angle variation by scanning X-ray diffractometry. Appita J. 52:363–367.Search in Google Scholar

Fengel, D., Stoll, M. (1973) Über die Veränderungen des Zellquerschnitts, der Dicke der Zellwand und der Wandschichten von Fichtenholz-Tracheiden innerhalb eines Jahrringes. Holzforschung 27:1–7.10.1515/hfsg.1973.27.1.1Search in Google Scholar

Gerhards, C.C. (1982) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Sci. 14:4–36.Search in Google Scholar

Gonzalez, R.C., Woods, R.E., Eddins, S.L. Digital Image using Matlab Processing. Pearson Prentice-Hall, Upper Saddle River, 2004.Search in Google Scholar

Haile, M.A., Ifju, P.G. (2012) Application of elastic image registration and refraction correction for non-contact underwater strain measurement. Strain 48:136–142.10.1111/j.1475-1305.2011.00805.xSearch in Google Scholar

Hameury, S., Sterley, M. (2006) Magnetic resonance imaging of moisture distribution in Pinus sylvestris L. exposed to daily indoor relative humidity fluctuations. Wood Mater. Sci. Eng. 1:116–126.Search in Google Scholar

Hansmann, C., Konnerth, J., Rosner, S. (2011) Digital image analysis of radial shrinkage of fresh spruce (Picea abies L.) wood. Wood Mater. Sci. Eng. 6:2–6.Search in Google Scholar

Harris, J.M., Meylan, B.A. (1965) The influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata. Holzforschung 19:144–153.10.1515/hfsg.1965.19.5.144Search in Google Scholar

Heikkilä, J., Silvén, O. (1997) A four-step calibration procedure with implicit image correction. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1106–1112.10.1109/CVPR.1997.609468Search in Google Scholar

Keunecke, D., Novosseletz, K., Lanvermann, C., Mannes, D., Niemz, P. (2012) Combination of X-ray and digital image correlation for the analysis of moisture-induced strain in wood: opportunities and challenges. Eur. J. Wood Wood Prod. 70:407–413.10.1007/s00107-011-0573-8Search in Google Scholar

Kollmann, F.F., Côté, W.A. Principles of Wood Science and Technology: Part I Solid Wood. Springer Verlag, 1968.10.1007/978-3-642-87928-9Search in Google Scholar

Lanvermann, C., Schmitt, U., Evans, R., Hering, S., Niemz, P. (2013) Distribution of structure and lignin within growth rings of Norway spruce. Wood Sci. Technol. Published online first. doi: 10.1007/s00226-013-0529-8.10.1007/s00226-013-0529-8Search in Google Scholar

Lehmann, E.H., Mannes, D. (2012) Wood investigations by means of radiation transmission techniques. J. Cult. Herit. 13:35–43.Search in Google Scholar

Lehmann, E.H., Vontobel, P., Scherrer, P., Niemz, P. (2001a) Anwendung der Methode der Neutronenradiographie zur Analyse von Holzeigenschaften. Eur. J. Wood Wood Prod. 59:463–471.10.1007/s00107-001-0259-8Search in Google Scholar

Lehmann, E.H., Vontobel, P., Wiezel, L. (2001b) Properties of the radiography facility NEUTRA at SINQ and its potential for use as a European Reference Facility. Nondestr. Testing Eval. 16:191–202.10.1080/10589750108953075Search in Google Scholar

Mannes, D., Lehmann, E., Cherubini, P., Niemz, P. (2007) Neutron imaging versus standard X-ray densitometry as method to measure tree-ring wood density. Trees 21:605–612.10.1007/s00468-007-0149-8Search in Google Scholar

Mannes, D., Josic, L., Lehmann, E., Niemz, P. (2009a) Neutron attenuation coefficients for non-invasive quantification of wood properties. Holzforschung 63:472–478.10.1515/HF.2009.081Search in Google Scholar

Mannes, D., Sonderegger, W., Hering, S., Lehmann, E., Niemz, P. (2009b) Non-destructive determination and quantification of diffusion processes in wood by means of neutron imaging. Holzforschung 63:589–596.10.1515/HF.2009.100Search in Google Scholar

Mannes, D., Marone, F., Lehmann, E., Stampanoni, M., Niemz, P. (2010) Application areas of synchrotron radiation tomographic microscopy for wood research. Wood Sci. Technol. 44:67–84.Search in Google Scholar

May, H. (1978) Einflüsse von Rohdichte und Jahrringbreite auf das Quellungsverhalten von Fichten-und Kiefernholz. Eur. J. Wood Wood Prod. 36:199–202.10.1007/BF02614491Search in Google Scholar

Moon, R.J., Wells, J., Kretschmann, D.E., Evans, J., Wiedenhoeft, A.C., Frihart, C.R. (2010) Influence of chemical treatments on moisture-induced dimensional change and elastic modulus of earlywood and latewood. Holzforschung 64:771–779.10.1515/hf.2010.106Search in Google Scholar

Niemz, P. Physik des Holzes und der Holzwerkstoffe. DRW, Leinfelden-Echterdingen, 1993.Search in Google Scholar

Pang, S., Herritsch, A. (2005) Physical properties of earlywood and latewood of Pinus radiata D. Don: anisotropic shrinkage, equilibrium moisture content and fibre saturation point. Holzforschung 59:654–667.10.1515/HF.2005.105Search in Google Scholar

Popper, R., Bariska, M. (1972) Die Azylierung des Holzes – Erste Mitteilung: Wasserdampf-Sorptionseigenschaften. Eur. J. Wood Wood Prod. 3:289–294.10.1007/BF02615202Search in Google Scholar

Popper, R., Niemz, P. (2009) Wasserdampfsorptionsverhalten ausgewählter heimischer und überseeischer Holzarten. Bauphysik 31:117–121.10.1002/bapi.200910017Search in Google Scholar

Quirk, J. (1984) Shrinkage and related properties of Douglas-fir cell walls. Wood Fiber Sci. 16:115–133.Search in Google Scholar

Rosner, S., Riegler, M., Vontobel, P., Mannes, D., Lehmann, E.H., Karlsson, B., Hansmann, C. (2012) Within-ring movement of free water in dehydrating Norway spruce sapwood visualized by neutron radiography. Holzforschung 66:751–756.10.1515/hf-2011-0234Search in Google Scholar

Sanabria, S.J., Hilbers, U., Neuenschwander, J., Niemz, P., Sennhauser, U., Thömen, H., Wenker, J.L. (2013) Modeling and prediction of density distribution and microstructure in particleboards from acoustic properties by correlation of non-contact high-resolution pulsed air-coupled ultrasound and X-ray images. Ultrasonics 53:157–170.10.1016/j.ultras.2012.05.004Search in Google Scholar PubMed

Skaar, C. Wood-Water Relations. Springer-Verlag, Heidelberg, 1988.10.1007/978-3-642-73683-4Search in Google Scholar

Sonderegger, W., Hering, S., Mannes, D., Vontobel, P., Lehmann, E.H., Niemz, P. (2010) Quantitative determination of bound water diffusion in multilayer boards by means of neutron imaging. Eur. J. Wood Wood Prod. 68:341–350.10.1007/s00107-010-0463-5Search in Google Scholar

Sutton, M.A., Orteu, J.J., Schreier, H.W. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, New York, 2009.Search in Google Scholar

Taguchi, A., Murata, K., Nakamura, M., Nakano, T. (2011) Scale effect in the anisotropic deformation change of tracheid cells during water adsorption. Holzforschung 65:253–256.10.1515/hf.2011.017Search in Google Scholar

Trtik, P., Dual, J., Keunecke, D., Mannes, D., Niemz, P., Stahli, P., Kaestner, A., Groso, A., Stampanoni, M. (2007) 3D imaging of microstructure of spruce wood. J. Struct. Biol. 159:46–55.Search in Google Scholar

Valla, A., Konnerth, J., Keunecke, D., Niemz, P., Müller, U., Gindl, W. (2010) Comparison of two optical methods for contactless, full field and highly sensitive in plane deformation measurements using the example of plywood. Wood Sci. Technol. 45:755–765.Search in Google Scholar

Wagenführ, R. Holzatlas. Fachbuchverlag Leipzig, 2000.Search in Google Scholar

Received: 2012-10-23
Accepted: 2013-3-25
Published Online: 2013-05-04
Published in Print: 2014-01-01

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2012-0171/html
Scroll to top button