Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 18, 2006

Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation

  • Johannes Konnerth and Wolfgang Gindl
From the journal Holzforschung

Abstract

The elastic modulus, hardness, and creep factor of wood cell walls in the interphase region of four different adhesive bonds were determined by nanoindentation. In comparison with reference cell walls unaffected by adhesive, interphase cell walls from melamine-urea-formaldehyde (MUF) and phenol-resorcinol-formaldehyde (PRF) adhesive bonds showed improved hardness and reduced creep, as well as improved elastic modulus in the case of MUF. In contrast, cell walls from the interphase region in polyvinylacetate (PVAc) and one-component polyurethane (PUR) bonds showed more creep, but lower elastic modulus and hardness than the reference. Considering the different cell-wall penetration behaviour of the adhesive polymers studied here, it is concluded that damage and loss of elastic modulus to surface cells occurring during the machining of wood is recovered in MUF and PRF bond lines, whereas damage of cell walls persists in PVAc and PUR bond lines.

:

Corresponding author. Institute of Wood Science and Technology, Department of Material Sciences and Process Engineering, BOKU-University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, A-1190 Vienna, Austria Phone: +43-1-47654-4255 Fax: +43-1-47654-4295

References

Backman, A.C., Lindberg, K.A.H. (2004) Interaction between wood and polyvinyl acetate glue studied with dynamic mechanical analysis and scanning electron microscopy. J. Appl. Polym. Sci.91:3009–3015.10.1002/app.13507Search in Google Scholar

Bledzki, A.K., Gassan, J. (1999) Composites reinforced with cellulose based fibres. Prog. Polym. Sci.24:221–274.10.1016/S0079-6700(98)00018-5Search in Google Scholar

Bolton, A.J., Dinwoodie, J.M., Davies, D.A. (1988) The validity of the use of SEM/EDAX as a tool for the detection of UF resin penetration into wood cell-walls in particleboard. Wood Sci. Technol.22:345–356.10.1007/BF00353324Search in Google Scholar

Broughton, J.G., Hutchinson, A.R. (2001) Adhesive systems for structural connections in timber. Int. J. Adhes. Adhes.21:177–186.10.1016/S0143-7496(00)00049-XSearch in Google Scholar

Buckley, C.J., Phanopoulos, C., Khaleque, N., Engelen, A., Holwill, M.E.J., Michette, A.G. (2002) Examination of the penetration of polymeric methylene di-phenyl-di-isocyanate (pMDI) into wood structure using chemical-state X-ray microscopy. Holzforschung56:215–222.10.1515/HF.2002.035Search in Google Scholar

CSM Instruments. Overview of mechanical testing standards. Applications Bulletin No. 18, September 2002.Search in Google Scholar

Dunky, M., Niemz, P. Holzwerkstoffe und Leime, Technologie und Einflussfaktoren. Springer-Verlag, Berlin, 2002.10.1007/978-3-642-55938-9Search in Google Scholar

Fan, Z., Swadener, J.G., Rho, J.Y., Roy, M.E., Pharr, G.M. (2002) Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Orthopaed. Res.20:806–810.10.1016/S0736-0266(01)00186-3Search in Google Scholar

Fengel, D., Kumar, R.N. (1970) Electron microscopic studies of glued wood joints. Holzforschung24:177–181.10.1515/hfsg.1970.24.6.177Search in Google Scholar

Furuno, T., Goto, T. (1975) Structure of the interphase between wood and synthetic polymer. VII. Mokuzai Gakkaishi21:289–296.Search in Google Scholar

Gao, S.L., Mader, E. (2002) Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos. Sci. Technol.33:559–576.10.1016/S1359-835X(01)00134-8Search in Google Scholar

Gindl, W. (2001) SEM and UV-microscopic investigation of glue lines in Parallam ((R)) PSL. Holz Roh Werkst.59:211–214.10.1007/s001070100194Search in Google Scholar

Gindl, W., Gupta, H.S. (2002) Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation. Compos. Sci. Technol.33:1141–1145.10.1016/S1359-835X(02)00080-5Search in Google Scholar

Gindl, W., Schoberl, T. (2004) The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Compos. Sci. Technol.35:1345–1349.10.1016/j.compositesa.2004.04.002Search in Google Scholar

Gindl, W., Dessipri, E., Wimmer, R. (2002) Using UV-microscopy to study diffusion of melamine-urea-formaldehyde resin in cell walls of spruce wood. Holzforschung56:103–107.10.1515/HF.2002.017Search in Google Scholar

Gindl, W., Zargar-Yaghubi, F., Wimmer, R. (2003) Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresour. Technol.87:325–330.10.1016/S0960-8524(02)00233-XSearch in Google Scholar

Gindl, W., Schoberl, T., Jeronimidis, G. (2004a) The interphase in phenol-formaldehyde and polymeric methylene di-phenyl-di-isocyanate glue lines in wood. Int. J. Adhes. Adhes.24:279–286.10.1016/j.ijadhadh.2003.10.002Search in Google Scholar

Gindl, W., Schoberl, T., Jeronimidis, G. (2004b) Corrigendum to “The interphase in phenol-formaldehyde (PF) and polymeric methylene di-phenyl-di-isocyanate (pMDI) glue lines in wood”. Int. J. Adhes. Adhes.24:535.10.1016/j.ijadhadh.2004.07.001Search in Google Scholar

Gindl, W., Sretenovic, A., Vincenti, A., Muller, U. (2005) Direct measurement of strain distribution along a wood bond line. Part 2: Effects of adhesive penetration on strain distribution. Holzforschung59:307–310.Search in Google Scholar

Gregory, J.R., Spearing, S.M. (2005) Nanoindentation of neat and in situ polymers in polymer-matrix composites. Compos. Sci. Technol.65:595–607.10.1016/j.compscitech.2004.09.001Search in Google Scholar

Kim, J.K., Hodzic, A. (2003) Nanoscale characterisation of thickness and properties of interphase in polymer matrix composites. J. Adhes.79:383–414.10.1080/00218460309585Search in Google Scholar

Kollmann, F.F.P., Côté, W.A.J. Principles of Wood Science and Technology – Solid Wood, 1. Springer, München, 1968.10.1007/978-3-642-87928-9Search in Google Scholar

Konnerth, J., Gindl, W., Mueller, U. (2006a) Elastic properties of adhesive polymers. Part I: Polymer films by means of electronic speckle pattern interferometry. J. Appl. Polym. Sci., in press.10.1002/app.24434Search in Google Scholar

Konnerth, J., Jaeger, A., Eberhardsteiner, J., Mueller, U., Gindl, W. (2006b) Elastic properties of adhesive polymers. Part II: Polymer films and bond lines by means of nanoindentation. J. Appl. Polym. Sci., in press.10.1002/app.24427Search in Google Scholar

Li, F.P., Williams, J.G., Altan, B.S., Miskioglu, I., Whipple, R.L. (2002) Studies of the interphase in epoxy-aluminum joints using nano-indentation and atomic force microscopy. J. Adhes. Sci. Technol.16:935–949.10.1163/156856102760136481Search in Google Scholar

Li, X.D., Bhushan, B. (2002) A review of nanoindentation continuous stiffness measurement technique and its application. Mater. Charact.48:11–36.10.1016/S1044-5803(02)00192-4Search in Google Scholar

Lichtenegger, H.C., Schöberl, T., Bartl, M.H., Waite, H., Stucky, G.D. (2002) High abrasion resistance with sparse mineralization: copper biomaterial in worm jaws. Science289:389–392.10.1126/science.1075433Search in Google Scholar

Oliver, W.C., Pharr, G.M. (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res.7:1564–1583.10.1557/JMR.1992.1564Search in Google Scholar

Rapp, A.O., Bestgen, H., Adam, W., Peck, R.D. (1999) Electron energy loss spectroscopy (EELS) for quantification of cell-wall penetration of a melamine resin. Holzforschung53:111–117.10.1515/HF.1999.018Search in Google Scholar

Saiki, H., Goto, T., Sakuno, T. (1975) Scanning electron microscopy of glue lines separated from plywood. Mokuzai Gakkaishi21:283–288.Search in Google Scholar

Sernek, M., Resnik, J., Kamke, F.A. (1999) Penetration of liquid urea-formaldehyde adhesive into beech wood. Wood Fiber Sci.31:41–48.Search in Google Scholar

Singh, A.P., Anderson, C.R., Warnes, J.M., Matsumura, J. (2002) The effect of planing on the microscopic structure of Pinus radiata wood cells in relation to penetration of PVA glue. Holz Roh Werkst.60:333–341.10.1007/s00107-002-0321-1Search in Google Scholar

Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26:31–43.10.1016/S0022-5320(69)90033-1Search in Google Scholar

Suchsland, O. (1958) Über das Eindringen des Leimes bei der Holzverleimung und die Bedeutung der Eindringtiefe für die Fugenfestigkeit. Holz Roh Werkst.16:101–108.10.1007/BF02615415Search in Google Scholar

Urena, A., Rams, J., Escalera, M.D., Sanchez, M. (2005) Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique. Compos. Sci. Technol.65:2025–2038.10.1016/j.compscitech.2005.04.013Search in Google Scholar

VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F., Meyers, G.F. (2001) Nanoindentation of polymers: an overview. Macromol. Symp.167:15–43.10.1002/1521-3900(200103)167:1<15::AID-MASY15>3.0.CO;2-TSearch in Google Scholar

Wimmer, R., Lucas, B.N. (1997) Comparing mechanical properties of secondary cell wall and cell corner middle lamella in spruce wood. IAWA J.18:77–88.10.1163/22941932-90001463Search in Google Scholar

Wimmer, R., Lucas, B.N., Tsui, T.Y., Oliver, W.C. (1997) Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci. Technol.31:131–141.10.1007/BF00705928Search in Google Scholar

Published Online: 2006-07-18
Published in Print: 2006-07-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/HF.2006.067/html
Scroll to top button