Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2015

Great migration: epigenetic reprogramming and germ cell-oocyte metamorphosis determine individual ovarian reserve

  • Onder Celik EMAIL logo , Banu Kumbak Aygun , Nilufer Celik , Suleyman Aydin , Esra Tustas Haberal , Levent Sahin , Yasemin Yavuz and Sudenaz Celik

Abstract

Emigration is defined as a synchronized movement of germ cells between the yolk sack and genital ridges. The miraculous migration of germ cells resembles the remigration of salmon traveling from one habitat to other. This migration of germ cells is indispensible for the development of new generations. It is not, however, clear why germ cells differentiate during migration but not at the place of origin. In order to escape harmful somatic signals which might disturb the proper establishment of germ cells forced germ cell migration may be necessary. Another reason may be to benefit from the opportunities of new habitats. Therefore, emigration may have powerful effects on the population dynamics of the immigrant germ cells. While some of these cells do reach their target, some others die or reach to wrong targets. Only germ cell precursors with genetically, and structurally powerful can reach their target. Likewise, epigenetic reprogramming in both migratory and post-migratory germ cells is essential for the establishment of totipotency. During this journey some germ cells may sacrifice themselves for the goodness of the others. The number and quality of germ cells reaching the genital ridge may vary depending on the problems encountered during migration. If the aim in germ cell specification is to provide an optimal ovarian reserve for the continuity of the generation, then this cascade of events cannot be only accomplished at the same level for every one but also are manifested by several outcomes. This is significant evidence supporting the possibility of unique individual ovarian reserve.


Corresponding author: Onder Celik, M.D., Professor, Metin Oktay Mah, 52/ 96 Sokak No 3/39, Kat:7, Karabağlar, İzmir, Turkey, Phone: +905304203566, E-mail: ; and Obstetrics and Gynecology, Usak, Turkey

References

1. Tilly JL, Niikura Y, Rueda BR. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism? Biol Reprod 2009;80:2–12.10.1095/biolreprod.108.069088Search in Google Scholar PubMed PubMed Central

2. Tilly JL, Johnson J. Recent arguments against germ cell renewal in the adult human ovary – Is an absence of marker gene expression really acceptable evidence of an absence of oogenesis? Cell Cycle 2007;6:879–83.10.4161/cc.6.8.4185Search in Google Scholar PubMed

3. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 2006;441:1109–14.10.1038/nature04929Search in Google Scholar PubMed

4. Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res 1951;6:63–108.Search in Google Scholar

5. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod 2008;23:699–708.10.1093/humrep/dem408Search in Google Scholar PubMed

6. Kellokumpu-Lehtinen PL, Soderstrom KO. Occurrence of nuage in fetal human germ cells. Cell Tissue Res 1978;194:171–7.10.1007/BF00209243Search in Google Scholar PubMed

7. Mazzoni TS, Grier HJ, Quagio-Grassiotto I. Germline cysts and the formation of the germinal epithelium during the female gonadal morphogenesis in Cyprinus carpio (Teleostei: Ostariophysi: Cypriniformes). Anat Rec (Hoboken) 2010;293:1581–606.10.1002/ar.21205Search in Google Scholar PubMed

8. Smith LC, Alcivar AA. Cytoplasmic inheritance and its effects on development and performance. J Reprod Fertil Suppl 1993;48:31–43.Search in Google Scholar

9. De Pol A, Vaccina F, Forabosco A, Cavazzuti E, Marzona L. Apoptosis of germ cells during human prenatal oogenesis. Hum Reprod 1997;12:2235–41.10.1093/humrep/12.10.2235Search in Google Scholar PubMed

10. Beaumont HM. Radiosensitivity of oogonia and oocytes in the foetal rat. Int J Radiat Biol 1961;3:59–72.10.1080/09553006114550071Search in Google Scholar PubMed

11. Kurilo LF. Oogenesis in antenatal development in man. Human Genetics 1981;57:86–92.10.1007/BF00271175Search in Google Scholar PubMed

12. Morita Y, Tilly JL. Oocyte apoptosis: like sand through an hourglass. Dev Biol 1999;213:1–17.10.1006/dbio.1999.9344Search in Google Scholar PubMed

13. Matova N, Cooley L. Comparative aspects of animal oogenesis. Dev Biol 2001;231:291–320.10.1006/dbio.2000.0120Search in Google Scholar

14. De Felici M. Origin, migration, and proliferation of human primordial germ cells. Oogenesis: Springer, 2013:19–37.10.1007/978-0-85729-826-3_2Search in Google Scholar

15. Pepling ME. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis 2006;44:622–32.10.1002/dvg.20258Search in Google Scholar

16. Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 2001;234:339–51.10.1006/dbio.2001.0269Search in Google Scholar

17. Theurkauf WE, Smiley S, Wong ML, Alberts BM. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 1992;115:923–36.10.1242/dev.115.4.923Search in Google Scholar

18. Cooley L, Verheyen E, Ayers K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992;69:173–84.10.1016/0092-8674(92)90128-YSearch in Google Scholar

19. Spradling AC. Germline cysts: communes that work. Cell 1993;72:649–51.10.1016/0092-8674(93)90393-5Search in Google Scholar

20. Mahajanmiklos S, Cooley L. Intercellular cytoplasm transport during drosophila oogenesis. Dev Biol 1994;165:336–51.10.1006/dbio.1994.1257Search in Google Scholar PubMed

21. Guild GM, Connelly PS, Shaw MK, Tilney LG. Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping. J Cell Biol 1997;138:783–97.10.1083/jcb.138.4.783Search in Google Scholar PubMed PubMed Central

22. Gutzeit HO, Koppa R. Time-lapse film analysis of cytoplasmic streaming during late oogenesis of drosophila. J Embryol Exp Morph 1982;67:101–11.10.1242/dev.67.1.101Search in Google Scholar

23. Buszczak M, Cooley L. Eggs to die for: cell death during Drosophila oogenesis. Cell Death Differ 2000;7:1071–4.10.1038/sj.cdd.4400755Search in Google Scholar PubMed

24. Ukeshima A. Germ cell death in the degenerating right ovary of the chick embryo. Zoolog Sci 1996;13:559–63.10.2108/zsj.13.559Search in Google Scholar

25. Salinas LS, Maldonado E, Navarro RE. Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ 2006;13:2129–39.10.1038/sj.cdd.4401976Search in Google Scholar

26. Tilly JL. Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol 2001;2:838–48.10.1038/35099086Search in Google Scholar

27. Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev 2012;58:44–50.10.1262/jrd.2011-012Search in Google Scholar

28. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 1999;126: 1011–22.10.1242/dev.126.5.1011Search in Google Scholar

29. Andux S, Ellis RE. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females. PLoS genetics 2008;4:e1000295.10.1371/journal.pgen.1000295Search in Google Scholar

30. Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO. A conserved checkpoint pathway mediates DNA damage – induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 2000;5:435–43.10.1016/S1097-2765(00)80438-4Search in Google Scholar

31. Angelo G, Van Gilst MR. Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 2009;326:954–8.10.1126/science.1178343Search in Google Scholar PubMed

32. Aballay A, Ausubel FM. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 2001;98:2735–9.10.1073/pnas.041613098Search in Google Scholar PubMed PubMed Central

33. Choi SS. High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction. Nutr Res Pract 2011;5:214–8.10.4162/nrp.2011.5.3.214Search in Google Scholar PubMed PubMed Central

34. Chaube SK, Shrivastav TG, Prasad S, Tiwari M, Tripathi A, Pandey AN, Premkumar KV. Clomiphene citrate induces ROS-mediated apoptosis in mammalian oocytes. Open J Apoptosis 2014;3:52–8.10.4236/ojapo.2014.33006Search in Google Scholar

35. Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet 2010;27:29–39.10.1007/s10815-009-9376-9Search in Google Scholar PubMed PubMed Central

36. Tripathi A, Shrivastav TG, Chaube SK. An increase of granulosa cell apoptosis mediates aqueous neem (Azadirachta indica) leaf extract-induced oocyte apoptosis in rat. Int J Appl Basic Med Res 2013;3:27–36.10.4103/2229-516X.112238Search in Google Scholar PubMed PubMed Central

37. Bailly A, Gartner A. Germ cell apoptosis and DNA damage responses. Adv Exp Med Biol 2013;757:249–76.10.1007/978-1-4614-4015-4_9Search in Google Scholar PubMed

38. Vaccari S, Weeks JL, Hsieh M, Menniti FS, Conti M. Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol Reprod 2009;81: 595–604.10.1095/biolreprod.109.077768Search in Google Scholar PubMed PubMed Central

39. Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 2005;130:791–9.10.1530/rep.1.00793Search in Google Scholar PubMed

40. Chaube SK, Prasad PV, Thakur SC, Shrivastav TG. Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis 2005;10:863–74.10.1007/s10495-005-0367-8Search in Google Scholar PubMed

41. Pepling ME, Spradling AC. Female mouse germ cells form synchronously dividing cysts. Development 1998;125:3323–8.10.1242/dev.125.17.3323Search in Google Scholar PubMed

42. de Cuevas M, Lilly MA, Spradling AC. Germline cyst formation in Drosophila. Annu Rev Genet 1997;31:405–28.10.1146/annurev.genet.31.1.405Search in Google Scholar PubMed

43. Monk M, McLaren A. X-chromosome activity in foetal germ cells of the mouse. J Embryol Exp Morphol 1981;63:75–84.10.1242/dev.63.1.75Search in Google Scholar

44. Zamboni L, Gondos B. Intercellular bridges and synchronization of germ cell differentiation during oogenesis in the rabbit. J Cell Biol 1968;36:276–82.10.1083/jcb.36.1.276Search in Google Scholar

45. McKearin D, Ohlstein B. A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development 1995;121:2937–47.10.1242/dev.121.9.2937Search in Google Scholar

46. Gondos B. Germ cell degeneration and intercellular bridges in the human fetal ovary. Z Zellforsch Mikrosk Anat 1973;138:23–30.10.1007/BF00307075Search in Google Scholar

47. Gondos B, Moonroe SA. Cystic granulosa cell tumor with massive hemoperitoneum: light and electron microscopic study. Obstet Gynecol 1971;38:683–9.Search in Google Scholar

48. Storto PD, King RC. The role of polyfusomes in generating branched chains of cystocytes during Drosophila oogenesis. Dev Genet 1989;10:70–86.10.1002/dvg.1020100203Search in Google Scholar

49. Mahowald AP, Strasshe JM. Intercellular migration of centrioles in germarium of Drosophila melanogaster – an electron microscopic study. J Cell Biol 1970;45:306–20.10.1083/jcb.45.2.306Search in Google Scholar

50. Gondos B. Comparative studies of normal and neoplastic ovarian germ cells: 2. Ultrastructure and pathogenesis of dysgerminoma. Int J Gynecol Pathol 1987;6:124–31.10.1097/00004347-198706000-00004Search in Google Scholar

51. Braun RE, Peschon JJ, Behringer RR, Brinster RL, Palmiter RD. Protamine 3′-untranslated sequences regulate temporal translational control and subcellular localization of growth hormone in spermatids of transgenic mice. Genes Dev 1989;3:793–802.10.1101/gad.3.6.793Search in Google Scholar

52. Gottanka J, Büning J. Oocytes develop from interconnected cystocytes in the panoistic ovary of Nemoura sp.(Pictet)(Plecoptera: Nemouridae). Int J Insect Morphol Embryol 1990;19:219–25.10.1016/0020-7322(90)90008-DSearch in Google Scholar

53. Büning J. The insect ovary: ultrastructure, previtellogenic growth and evolution: Springer Science and Business Media. New York: Chapman and Hall, 1994.Search in Google Scholar

54. Jenuth JP, Peterson AC, Fu K, Shoubridge EA. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 1996;14:146–51.10.1038/ng1096-146Search in Google Scholar PubMed

55. Iguchi T, Takasugi N. Polyovular follicles in the ovary of immature mice exposed prenatally to diethylstilbestrol. Anat Embryol (Berl) 1986;175:53–5.10.1007/BF00315455Search in Google Scholar PubMed

56. Reynaud K, Halter S, Tahir Z, Thoumire S, Chebrout M, Chastant-Maillard S. Polyovular follicles. Gynecol Obstet Fertil 2010;38:395–7.10.1016/j.gyobfe.2010.04.008Search in Google Scholar PubMed

57. Telfer E, Gosden RG. A quantitative cytological study of polyovular follicles in mammalian ovaries with particular reference to the domestic bitch (Canis familiaris). J Reprod Fertil 1987;81:137–47.10.1530/jrf.0.0810137Search in Google Scholar

58. McLaren A. Primordial germ cells in the mouse. Dev Biol 2003;262:1–15.10.1016/S0012-1606(03)00214-8Search in Google Scholar

59. Ewen-Campen B, Schwager EE, Extavour CG. The molecular machinery of germ line specification. Mol Reprod Dev 2010;77:3–18.10.1002/mrd.21091Search in Google Scholar

60. Huettner AF. The origin of the germ cells in Drosophila melanogaster. J Morphol 1923;37:385–423.10.1002/jmor.1050370204Search in Google Scholar

61. Hird SN, Paulsen JE, Strome S. Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development 1996;122:1303–12.10.1242/dev.122.4.1303Search in Google Scholar

62. Houston DW, King ML. A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 2000;127:447–56.10.1242/dev.127.3.447Search in Google Scholar

63. Seydoux G, Braun RE. Pathway to totipotency: lessons from germ cells. Cell 2006;127:891–904.10.1016/j.cell.2006.11.016Search in Google Scholar

64. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983;100:64–119.10.1016/0012-1606(83)90201-4Search in Google Scholar

65. Johnson AD, Crother B, White ME, Patient R, Bachvarova RF, Drum M, Masi T. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage. Philos Trans R Soc Lond B Biol Sci 2003;358:1371–9.10.1098/rstb.2003.1331Search in Google Scholar PubMed PubMed Central

66. Johnson AD, Drum M, Bachvarova RF, Masi T, White ME, Crother BI. Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution. Evol Dev 2003;5:414–31.10.1046/j.1525-142X.2003.03048.xSearch in Google Scholar PubMed

67. Extavour CG, Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 2003;130:5869–84.10.1242/dev.00804Search in Google Scholar PubMed

68. Juliano CE, Swartz SZ, Wessel GM. A conserved germline multipotency program. Development 2010;137:4113–26.10.1242/dev.047969Search in Google Scholar PubMed PubMed Central

69. Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I. RNA granules in germ cells. Cold Spring Harb Perspect Biol 2011;3:a002774.10.1101/cshperspect.a002774Search in Google Scholar PubMed PubMed Central

70. Wu HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK. Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 2011;353:147–59.10.1016/j.ydbio.2011.02.014Search in Google Scholar PubMed

71. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999;13:424–36.10.1101/gad.13.4.424Search in Google Scholar PubMed PubMed Central

72. Ohinata Y, Seki Y, Payer B, O’Carroll D, Surani MA, Saitou M. Germline recruitment in mice: a genetic program for epigenetic reprogramming. Ernst Schering Res Found Workshop 2006;60:143–74.10.1007/3-540-31437-7_11Search in Google Scholar PubMed

73. Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 2008;9:129–40.10.1038/nrg2295Search in Google Scholar PubMed

74. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 2005;278:440–58.10.1016/j.ydbio.2004.11.025Search in Google Scholar PubMed

75. Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, Saga Y, Tachibana M, Shinkai Y, Saitou M. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 2007;134:2627–38.10.1242/dev.005611Search in Google Scholar PubMed

76. Tsang TE, Khoo PL, Jamieson RV, Zhou SX, Ang SL, Behringer R, Tam PP. The allocation and differentiation of mouse primordial germ cells. Int J Dev Biol 2001;45:549–55.Search in Google Scholar

77. Tam PP, Zhou SX. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 1996;178:124–32.10.1006/dbio.1996.0203Search in Google Scholar PubMed

78. Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 2005;436:207–13.10.1038/nature03813Search in Google Scholar

79. Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M, Yamanaka K, Ohinata Y, Saitou M. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 2008;40:1016–22.10.1038/ng.186Search in Google Scholar

80. Saitou M, Payer B, Lange UC, Erhardt S, Barton SC, Surani MA. Specification of germ cell fate in mice. Philos Trans R Soc Lond B Biol Sci 2003;358:1363–70.10.1098/rstb.2003.1324Search in Google Scholar

81. Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germ cell lineage in mice. Cell 2009;137:571–84.10.1016/j.cell.2009.03.014Search in Google Scholar

82. Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 1996;382:713–6.10.1038/382713a0Search in Google Scholar

83. Okamura D, Kimura T, Nakano T, Matsui Y. Cadherin-mediated cell interaction regulates germ cell determination in mice. Development 2003;130:6423–30.10.1242/dev.00870Search in Google Scholar

84. Kurimoto K, Yabuta Y, Ohinata Y, Shigeta M, Yamanaka K, Saitou M. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev 2008;22:1617–35.10.1101/gad.1649908Search in Google Scholar

85. Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature 2002;418: 293–300.10.1038/nature00927Search in Google Scholar

86. Yabuta Y, Kurimoto K, Ohinata Y, Seki Y, Saitou M. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol Reprod 2006;75:705–16.10.1095/biolreprod.106.053686Search in Google Scholar

87. Pesce M, Gross MK, Schöler HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 1998;20:722–32.10.1002/(SICI)1521-1878(199809)20:9<722::AID-BIES5>3.0.CO;2-ISearch in Google Scholar

88. Tam PP, Zhou SX, Tan SS. X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development 1994;120: 2925–32.10.1242/dev.120.10.2925Search in Google Scholar

89. Ginsburg M, Snow MH, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development 1990;110: 521–8.10.1242/dev.110.2.521Search in Google Scholar

90. Tam PP, Snow MH. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol 1981;64:133–47.Search in Google Scholar

91. Anderson R, Copeland TK, Scholer H, Heasman J, Wylie C. The onset of germ cell migration in the mouse embryo. Mech Dev 2000;91:61–8.10.1016/S0925-4773(99)00271-3Search in Google Scholar

92. Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 2000;14:1053–63.10.1210/mend.14.7.0479Search in Google Scholar

93. Molyneaux K, Stallock J, Schaible K, Wylie C. Time-lapse analysis of primordial germ cells in the mouse. J Exp Zool 2001;134: 207–37.Search in Google Scholar

94. Pepling, M. Oocyte development before and during folliculogenesis, in oocyte physiology and development in domestic animals. In: Krisher RL, editor. Oxford, UK: Wiley-Blackwell, 2013.10.1002/9781118538074.ch1Search in Google Scholar

95. Juengel JL, Sawyer HR, Smith PR, Quirke LD, Heath DA, Lun S, Wakefield SJ, McNatty KP. Origins of follicular cells and ontogeny of steroidogenesis in ovine fetal ovaries. Mol Cell Endocrinol 2002;191:1–10.10.1016/S0303-7207(02)00045-XSearch in Google Scholar

96. Witschi E. Early history of the human germ cells. Anat Rec 1946;94:506.10.1097/00006254-194608000-00117Search in Google Scholar

97. Witschi E. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib Embryol 1948;32:67–80.Search in Google Scholar

98. Doitsidou M, Reichman-Fried M, Stebler J, Köprunner M, Dörries J, Meyer D, Esguerra CV, Leung T, Raz E. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 2002;111:647–59.10.1016/S0092-8674(02)01135-2Search in Google Scholar

99. Farini D, La Sala G, Tedesco M, De Felici M. Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Dev Biol 2007;306: 572–83.10.1016/j.ydbio.2007.03.031Search in Google Scholar PubMed

100. Godin I, Wylie C. TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development 1991;113:1451–7.10.1242/dev.113.4.1451Search in Google Scholar PubMed

101. Rucker EB 3rd, Dierisseau P, Wagner KU, Garrett L, Wynshaw-Boris A, Flaws JA, Hennighausen L. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol Endocrinol 2000;14:1038–52.10.1210/mend.14.7.0465Search in Google Scholar PubMed

102. Richards AJ, Enders GC, Resnick JL. Activin and TGFbeta limit murine primordial germ cell proliferation. Dev Biol 1999;207:470–5.10.1006/dbio.1998.9174Search in Google Scholar PubMed

103. Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M, Lomelí H, Nagy A, McLaughlin KJ, Schöler HR, Tomilin A. Oct4 is required for primordial germ cell survival. EMBO Rep 2004;5:1078–83.10.1038/sj.embor.7400279Search in Google Scholar PubMed PubMed Central

104. Suzuki H, Tsuda M, Kiso M, Saga Y. Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and-independent apoptotic pathways. Dev Biol 2008;318: 133–42.10.1016/j.ydbio.2008.03.020Search in Google Scholar PubMed

105. Ikeda Y, Lala DS, Luo X, Kim E, Moisan MP, Parker KL. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydroxylase gene expression. Mol Endocrinol 1993;7:852–60.10.1210/mend.7.7.8413309Search in Google Scholar

106. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, Yoshitome A, Yamawaki K, Amagai M, Inoue A, Oshima T, Kakitani M. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 2008;17:1278–91.10.1093/hmg/ddn036Search in Google Scholar PubMed

107. Merkwitz C, Lochhead P, Tsikolia N, Koch D, Sygnecka K, Sakurai M, Spanel-Borowski K, Ricken AM. Expression of KIT in the ovary, and the role of somatic precursor cells. Prog Histochem Cytochem 2011;46:131–84.10.1016/j.proghi.2011.09.001Search in Google Scholar PubMed

108. Mollgard K, Lundberg JJ, Wiklund L, Lachenmayer L, Baumgarten HG. Morphologic consequences of serotonin neurotoxin administration: neuron-target cell interaction in the rat subcommissural organ. Ann N Y Acad Sci 1978;305: 262–88.10.1111/j.1749-6632.1978.tb31529.xSearch in Google Scholar PubMed

109. Anderson R, Fässler R, Georges-Labouesse E, Hynes RO, Bader BL, Kreidberg JA, Schaible K, Heasman J, Wylie C. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development 1999;126:1655–64.10.1242/dev.126.8.1655Search in Google Scholar PubMed

110. Poelmann R. The formation of the embryonic mesoderm in the early post-implantation mouse embryo. Anat Embryol (Berl) 1981;162:29–40.10.1007/BF00318092Search in Google Scholar PubMed

111. Vermeij-Keers C, Poelmann R. The neural crest: a study on cell degeneration and the improbability of cell migration in mouse embryos. Neth J Zool 1979;30:74–81.10.1163/002829680X00041Search in Google Scholar

112. Gasser RF. Evidence that sclerotomal cells do not migrate medially during normal embryonic development of the rat. Am J Anat 1979;154:509–23.10.1002/aja.1001540406Search in Google Scholar PubMed

113. Freeman B. The active migration of germ cells in the embryos of mice and men is a myth. Reproduction 2003;125:635–43.10.1530/rep.0.1250635Search in Google Scholar

114. Gilbert SF. Germ Cell Migration. Developmental Biology, 6th ed. Sunderland (MA): Sinauer Associates, 2000.Search in Google Scholar

115. Fujimoto T, Miyayama Y, Fuyuta M. The origin, migration and fine morphology of human primordial germ cells. Anat Rec (Hoboken) 1977;188:315–30.10.1002/ar.1091880305Search in Google Scholar

116. Jeon KW, Kennedy JR. The primordial germ cells in early mouse embryos: light and electron microscopic studies. Dev Biol 1973;31:275–84.10.1016/0012-1606(73)90264-9Search in Google Scholar

117. Tam P, Snow M. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morph 1981;64:133–47.10.1242/dev.64.1.133Search in Google Scholar

118. Donovan PJ, Stott D, Cairns LA, Heasman J, Wylie CC. Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell 1986;44:831–8.10.1016/0092-8674(86)90005-XSearch in Google Scholar

119. Swift CH. Origin and early history of the primordial germ-cells in the chick. Am J Anat 1914;15:483–516.10.1002/aja.1000150404Search in Google Scholar

120. Ginsburg M, Eyal-Giladi H. Primordial germ cells of the young chick blastoderm originate from the central zone of the area pellucida irrespective of the embryo-forming process. Development 1987;101:209–19.10.1242/dev.101.2.209Search in Google Scholar PubMed

121. Ooi SK, O’Donnell AH, Bestor TH. Mammalian cytosine methylation at a glance. J Cell Sci 2009;122:2787–91.10.1242/jcs.015123Search in Google Scholar PubMed PubMed Central

122. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004;14:188–95.10.1016/j.gde.2004.01.005Search in Google Scholar PubMed

123. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005;74:481–514.10.1146/annurev.biochem.74.010904.153721Search in Google Scholar PubMed

124. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004;431:96–9.10.1038/nature02886Search in Google Scholar PubMed

125. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science 2001;294:2536–9.10.1126/science.1065848Search in Google Scholar PubMed

126. Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 2007;307:368–79.10.1016/j.ydbio.2007.05.002Search in Google Scholar PubMed

127. Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 2004;13:839–49.10.1093/hmg/ddh104Search in Google Scholar PubMed

128. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature 2000;403:501–2.10.1038/35000656Search in Google Scholar PubMed

129. Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 2001;98:13734–8.10.1073/pnas.241522698Search in Google Scholar PubMed PubMed Central

130. Lepikhov K, Zakhartchenko V, Hao R, Yang F, Wrenzycki C, Niemann H, Wolf E, Walter J. Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 2008;1:8.10.1186/1756-8935-1-8Search in Google Scholar PubMed PubMed Central

131. Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabó PE, Pfeifer GP, Li J, Xu GL. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011;477:606–10.10.1038/nature10443Search in Google Scholar PubMed

132. Kurimoto K, Yamaji M, Seki Y, Saitou M. Specification of the germ cell lineage in mice: a process orchestrated by the PR-domain proteins, Blimp1 and Prdm14. Cell Cycle 2008;7: 3514–8.10.4161/cc.7.22.6979Search in Google Scholar PubMed

133. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011;473:398–402.10.1038/nature10008Search in Google Scholar PubMed

134. Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992;70:841–7.10.1016/0092-8674(92)90317-6Search in Google Scholar

135. Hajkova P, el-Maarri O, Engemann S, Oswald J, Olek A, Walter J. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol Biol 2002;200:143–54.10.1385/1-59259-182-5:143Search in Google Scholar

136. Guibert S, Forne T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 2012;22:633–41.10.1101/gr.130997.111Search in Google Scholar PubMed PubMed Central

137. Lane P, Staples KJ. Roeing against the wind and wadeing against the current: embryonic stem cell research and the abortion debate. J Androl 2003;24:312–6.10.1002/j.1939-4640.2003.tb02677.xSearch in Google Scholar PubMed

138. Chang AS, Moley KH, Wangler M, Feinberg AP, DeBaun MR. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril 2005;83:349–54.10.1016/j.fertnstert.2004.07.964Search in Google Scholar PubMed PubMed Central

139. Sutcliffe AG, Peters CJ, Bowdin S, Temple K, Reardon W, Wilson L, Clayton-Smith J, Brueton LA, Bannister W, Maher ER. Assisted reproductive therapies and imprinting disorders – a preliminary British survey. Hum Reprod 2006;21:1009–11.10.1093/humrep/dei405Search in Google Scholar PubMed

140. Filipponi D, Feil R. Perturbation of genomic imprinting in oligozoospermia. Epigenetics 2009;4:27–30.10.4161/epi.4.1.7311Search in Google Scholar PubMed

141. Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod 2007;22:26–35.10.1093/humrep/del316Search in Google Scholar PubMed

142. Khoueiry R, Ibala-Rhomdane S, Méry L, Blachère T, Guérin JF, Lornage J, Lefèvre A. Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J Med Genet 2008;45:583–8.10.1136/jmg.2008.057943Search in Google Scholar PubMed

143. Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet 2008;17: 1653–65.10.1093/hmg/ddn055Search in Google Scholar PubMed

144. Kerjean A, Couvert P, Heams T, Chalas C, Poirier K, Chelly J, Jouannet P, Paldi A, Poirot C. In vitro follicular growth affects oocyte imprinting establishment in mice. Eur J Hum Genet 2003;11:493–6.10.1038/sj.ejhg.5200990Search in Google Scholar

145. Ecker DJ, Stein P, Xu Z, Williams CJ, Kopf GS, Bilker WB, Abel T, Schultz RM. Long-term effects of culture of preimplantation mouse embryos on behavior. Proc Natl Acad Sci USA 2004;101:1595–600.10.1073/pnas.0306846101Search in Google Scholar

146. Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 2007;77:87–111.10.1016/S0070-2153(06)77004-1Search in Google Scholar

147. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 2001;64:904–9.10.1095/biolreprod64.3.904Search in Google Scholar PubMed

148. Andersen PR, Tronick SR, Aaronson SA. Structural organization and biological activity of molecular clones of the integrated genome of a BALB/c mouse sarcoma virus. J Virol 1981;40:431–9.10.1128/jvi.40.2.431-439.1981Search in Google Scholar

149. Burger G, Gray MW, Lang BF. Mitochondrial genomes: anything goes. Trends Genet 2003;19:709–16.10.1016/j.tig.2003.10.012Search in Google Scholar PubMed

150. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457–65.10.1038/290457a0Search in Google Scholar PubMed

151. Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod 2000;15(Suppl 2):11–7.10.1093/humrep/15.suppl_2.11Search in Google Scholar PubMed

152. Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 1980;77:6715–9.10.1073/pnas.77.11.6715Search in Google Scholar PubMed PubMed Central

153. Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 1995;92:4542–6.10.1073/pnas.92.10.4542Search in Google Scholar PubMed PubMed Central

154. Bogenhagen DF. Does mtDNA nucleoid organization impact aging? Exp Gerontol 2010;45:473–7.10.1016/j.exger.2009.12.002Search in Google Scholar

155. Michaels GS, Hauswirth WW, Laipis PJ. Mitochondrial DNA copy number in bovine oocytes and somatic cells. Dev Biol 1982;94:246–51.10.1016/0012-1606(82)90088-4Search in Google Scholar

156. Pikó L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 1987;123:364–74.10.1016/0012-1606(87)90395-2Search in Google Scholar

157. Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol 1998;145:81–8.10.1016/S0303-7207(98)00173-7Search in Google Scholar

158. Birky CW Jr. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 1995;92:11331–8.10.1073/pnas.92.25.11331Search in Google Scholar

159. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitin tag for sperm mitochondria. Nature 1999;402:371–2.10.1038/46466Search in Google Scholar

160. DeLuca SZ, O’Farrell PH. Barriers to male transmission of mitochondrial DNA in sperm development. Dev Cell 2012;22: 660–8.10.1016/j.devcel.2011.12.021Search in Google Scholar

161. Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 2011;334:1144–7.10.1126/science.1211878Search in Google Scholar

162. Leffler A, Ludwig M, Schmitt O, Busch LC. Germ cell migration and early development of the gonads in the trisomy 16 mouse – an animal model for Down’s syndrome. Ann Anat 1999;181:247–52.10.1016/S0940-9602(99)80039-9Search in Google Scholar

163. Makabe S, Motta PM. Migration of human germ cells and their relationship with the developing ovary: ultrastructural aspects. Prog Clin Biol Res 1989;296:41.Search in Google Scholar

164. Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 2000;15(Suppl 2):129–47.10.1093/humrep/15.suppl_2.129Search in Google Scholar PubMed

165. Allen JF. Separate sexes and the mitochondrial theory of ageing. J Theor Biol 1996;180:135–40.10.1006/jtbi.1996.0089Search in Google Scholar PubMed

166. Blok RB, Gook DA, Thorburn DR, Dahl HH. Skewed segregation of the mtDNA nt 8993 (T–>G) mutation in human oocytes. Am J Hum Genet 1997;60:1495–501.10.1086/515453Search in Google Scholar PubMed PubMed Central

167. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, MacGregor G, Sassone-Corsi P, Wallace DC. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 2012;151: 333–43.10.1016/j.cell.2012.09.004Search in Google Scholar PubMed PubMed Central

168. Jansen RP. Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum Reprod 2000;15(Suppl 2):112–28.10.1093/humrep/15.suppl_2.112Search in Google Scholar PubMed

169. Krakauer DC, Mira A. Mitochondria and germ-cell death. Nature 1999;400:125–6.10.1038/22026Search in Google Scholar PubMed

170. Hauswirth WW, Laipis PJ. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 1982;79:4686–90.10.1073/pnas.79.15.4686Search in Google Scholar PubMed PubMed Central

171. Meirelles FV, Smith LC. Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics 1998;148:877–83.10.1093/genetics/148.2.877Search in Google Scholar PubMed PubMed Central

172. Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J, Yonekawa H. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 2007;39:386–90.10.1038/ng1970Search in Google Scholar PubMed

173. Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 2008;40:1484–8.10.1038/ng.258Search in Google Scholar PubMed

174. Takagi N, Sasaki M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 1975;256:640–2.10.1038/256640a0Search in Google Scholar PubMed

175. Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM, Avner P, Heard E. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 2005;438:369–73.10.1038/nature04155Search in Google Scholar

176. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961;190:372–3.10.1038/190372a0Search in Google Scholar

177. Epstein CJ. Mammalian oocytes: X chromosome activity. Science 1969;163:1078–9.10.1126/science.163.3871.1078Search in Google Scholar

178. Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, Brockdorff N. Reactivation of the paternal X chromosome in early mouse embryos. Science 2004;303: 666–9.10.1126/science.1092674Search in Google Scholar

179. Sugimoto M, Abe K. X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet 2007;3:e116.10.1371/journal.pgen.0030116Search in Google Scholar

180. de Napoles M, Nesterova T, Brockdorff N. Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells. PloS one 2007;2:e860.10.1371/journal.pone.0000860Search in Google Scholar

181. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002;3:662–73.10.1038/nrg887Search in Google Scholar

182. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002;117:15–23.10.1016/S0925-4773(02)00181-8Search in Google Scholar

183. Lin H. The tao of stem cells in the germline. Annu Rev Genet 1997;31:455–91.10.1146/annurev.genet.31.1.455Search in Google Scholar PubMed

184. Saito T, Goto-Kazeto R, Arai K, Yamaha E. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 2008;78:159–66.10.1095/biolreprod.107.060038Search in Google Scholar PubMed

185. van Winkoop A, Timmermans LP. Phenotypic changes in germ cells during gonadal development of the common carp (Cyprinus carpio). An immunohistochemical study with anti-carp spermatogonia monoclonal antibodies. Histochemistry 1992;98:289–98.10.1007/BF00270012Search in Google Scholar

186. Byskov AG, Lintern-Moore S. Follicle formation in the immature mouse ovary: the role of the rete ovarii. J Anat 1973;116(Pt 2): 207–17.Search in Google Scholar

187. Sawyer HR, Smith P, Heath DA, Juengel JL, Wakefield SJ, McNatty KP. Formation of ovarian follicles during fetal development in sheep. Biol Reprod 2002;66:1134–50.10.1095/biolreprod66.4.1134Search in Google Scholar

188. Magoffin DA. Ovarian theca cell. Int J Biochem Cell Biol 2005;37:1344–9.10.1016/j.biocel.2005.01.016Search in Google Scholar

189. Pepling ME, Wilhelm JE, O’Hara AL, Gephardt GW, Spradling AC. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc Natl Acad Sci USA 2007;104: 187–92.10.1073/pnas.0609923104Search in Google Scholar

190. Liu CF, Liu C, Yao HH. Building pathways for ovary organogenesis in the mouse embryo. Curr Top Dev Biol 2010;90:263–90.10.1016/S0070-2153(10)90007-0Search in Google Scholar

191. von Hofsten J, Olsson PE. Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 2005;3:63.10.1186/1477-7827-3-63Search in Google Scholar PubMed PubMed Central

192. Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A, Camerino G. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 2006;38:1304–9.10.1038/ng1907Search in Google Scholar PubMed

193. Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, Forabosco A, Pilia G, Schlessinger D. Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 2005;14:2053–62.10.1093/hmg/ddi210Search in Google Scholar PubMed

194. Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R. Dax1 antagonizes Sry action in mammalian sex determination. Nature 1998;391:761–7.10.1038/35799Search in Google Scholar PubMed

195. Ohno S, Cattanach BM. Cytological study of an X-autosome translocation in Mus musculus. Cytogenetics 1962;1:129–40.10.1159/000129725Search in Google Scholar

196. Morris T. The XO and Oy chromosome constitutions in the mouse. Genet Res 1968;12:125–37.10.1017/S0016672300011745Search in Google Scholar PubMed

197. Marsh H, Kasuya T. Changes in the ovaries of the short-finned pilot Whale, Globicephalu mecrorhynchuso with age and reproductive activity. Rep Int Whal Commn (Special-issue) 1984;6:311–335.Search in Google Scholar

198. Ohsumi S. Comparison of maturity and accumulation rate of corpora albicantia between the left and right ovaries in Cetacea. Sci Rep Whales Res Inst 1964;18:123–48.Search in Google Scholar

199. Ukeshima A, Fujimoto T. A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick. Anat Rec (Hoboken) 1991;230:378–86.10.1002/ar.1092300311Search in Google Scholar PubMed

200. McLaren A. Mammalian development: methods and success of nuclear transplantation in mammals. Nature 1984;309:671–2.10.1038/309671b0Search in Google Scholar PubMed

201. Dingle H, Drake VA. What is migration? Bioscience 2007;57:113–21.10.1641/B570206Search in Google Scholar

Received: 2015-10-12
Accepted: 2015-10-30
Published Online: 2015-12-17
Published in Print: 2016-1-1

©2016 by De Gruyter

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/hmbci-2015-0049/html
Scroll to top button