Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 7, 2021

Synthesis and biological characterization of a new fluorescent probe for vesicular trafficking based on polyazamacrocycle derivative

  • Barbara Canonico , Luca Giorgi , Maria Gemma Nasoni , Mariele Montanari , Gianluca Ambrosi , Mauro Formica , Caterina Ciacci , Patrizia Ambrogini , Stefano Papa , Vieri Fusi and Francesca Luchetti EMAIL logo
From the journal Biological Chemistry

Abstract

The fluorescent probes represent an important tool in the biological study, in fact characterization of cellular structures and organelles are an important tool-target for understanding the mechanisms regulating most biological processes. Recently, a series of polyamino-macrocycles based on 1,4,7,10-tetraazacyclododecane was synthesized, bearing one or two NBD units (AJ2NBD·4HCl) useful as sensors for metal cations and halides able to target and to detect apolar environment, as lipid membranes. In this paper, we firstly illustrate the chemical synthesis of the AJ2NBD probe, its electronic absorption spectra and its behavior regarding pH of the environment. Lack of any cellular toxicity and an efficient labelling on fresh, living cells was demonstrated, allowing the use of AJ2NBD in biological studies. In particular, this green fluorescent probe may represent a potential dye for the compartments involved in the endosomal/autophagic pathway. This research’s field should benefit from the use of AJ2NBD as a vesicular tracer, however, to ensure the precise nature of vesicles/vacuoles traced by this new probe, other more specific tests are needed.


Corresponding author: Francesca Luchetti, Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy, E-mail:
Barbara Canonico and Luca Giorgi contributed equally to this work.
  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Amatori, S., Ambrosi, G., Borgogelli, E., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., et al.. (2014). Modulating the sensor response to halide using NBD-based azamacrocycles. Inorg. Chem. 53: 4560–4569. https://doi.org/10.1021/ic5001649.Search in Google Scholar PubMed

Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R., et al.. (2012). Multi-use NBD-based tetra-amino macrocycle: fluorescent probe for metals and anions and live cell marker. Chemistry 18: 4274–4284. https://doi.org/10.1002/chem.201103135.Search in Google Scholar PubMed

Ambrosi, G., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Rossi, P., and Zappia, G. (2009). A new versatile solvatochromic amino-macrocycle. from metal ions to cell sensing in solution and in the solid state. Chem. Commun. 45: 7039–7041. https://doi.org/10.1039/b913435b.Search in Google Scholar PubMed

Arca, M., Caltagirone, C., De Filippo, G., Formica, M., Fusi, V., Giorgi, L., Lippolis, V., Prodi, L., Rampazzo, E., Scorciapino, M.A., et al.. (2014). A fluorescent ratiometric nanosized system for the determination of PdII in water. Chem. Commun. 50: 15259–15262. https://doi.org/10.1039/c4cc07969h.Search in Google Scholar PubMed

Bolte, S. and Cordelières, F.P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224: 213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x.Search in Google Scholar PubMed

Canonico, B., Cesarini, E., Salucci, S., Luchetti, F., Falcieri, E., Di Sario, G., Palma, F., and Papa, S. (2016). Defective autophagy, mitochondrial clearance and lipophagy in niemann-pick type B lymphocytes. PLoS One, https://doi.org/10.1371/journal.pone.0165780.Search in Google Scholar PubMed PubMed Central

Canonico, B., Di Sario, G., Cesarini, E., Campana, R., Luchetti, F., Zamai, L., Ortolani, C., Nasoni, M.G., Baffone, W., and Papa, S. (2018). Monocyte response to different Campylobacter jejuni lysates involves endoplasmic reticulum stress and the lysosomal–mitochondrial axis: when cell death is better than cell survival. Toxins 10, https://doi.org/10.3390/toxins10060239.Search in Google Scholar PubMed PubMed Central

Cao, Z., Wang, Y., Long, Z., and He, G. (2019). Interaction between autophagy and the NLRP3 inflammasome. Acta Biochim. Biophys. Sin. https://doi.org/10.1093/abbs/gmz098.Search in Google Scholar PubMed

Cesarini, E., Cerioni, L., Canonico, B., Di Sario, G., Guidarelli, A., Lattanzi, D., Savelli, D., Guescini, M., Nasoni, M.G., Bigini, N., et al.. (2018). Melatonin protects hippocampal HT22 cells from the effects of serum deprivation specifically targeting mitochondria. PloS One 13: e0203001. https://doi.org/10.1371/journal.pone.0203001.Search in Google Scholar PubMed PubMed Central

Ciampolini, M., Micheloni, M., Nardi, N., Paoletti, P., Dapporto, P., and Zanobini, F. (1984). Synthesis and characterisation of 1,7-dimethyl-1,4,7,10-tetra-azacyclododecane: crystal structure of the nickel(II) bromide monohydrate complex of this macrocycle; thermodynamic studies of protonation and metal complex formation. Dalton Trans. 7: 1357–1362. https://doi.org/10.1039/dt9840001357.Search in Google Scholar

Dick, F.P., Coelho, F.L., Rodembusch, F.S., and Campo, L.F. (2014). Amphiphilic ESIPT benzoxazole derivatives as prospective fluorescent membrane probes. Tetrahedron Lett. 55: 3024–3029. https://doi.org/10.1016/j.tetlet.2014.03.103.Search in Google Scholar

Formica, M., Fusi, V., Giorgi, L., and Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coord. Chem. Rev. https://doi.org/10.1016/j.ccr.2011.09.010.Search in Google Scholar

Galati, S., Boni, C., Gerra, M.C., Lazzaretti, M., and Buschini, A. (2019). Autophagy: a player in response to oxidative stress and DNA damage. Oxidative Medicine and Cellular Longevity, https://doi.org/10.1155/2019/5692958.Search in Google Scholar

Gans, P., Sabatini, A., and Vacca, A. (1996). Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43: 1739–1753. https://doi.org/10.1016/0039-9140(96)01958-3.Search in Google Scholar

Hu, Y.B., Dammer, E.B., Ren, R.J., and Wang, G. (2015). The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 4: 1–10. https://doi.org/10.1186/s40035-015-0041-1.Search in Google Scholar

Hyttinen, J.M.T., Niittykoski, M., Salminen, A., and Kaarniranta, K. (2013). Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim. Biophys. Acta Mol. Cell Res. 1833: 503–510. https://doi.org/10.1016/j.bbamcr.2012.11.018.Search in Google Scholar

Klionsky, D.J., Abdel-Aziz, A.K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M.H., Abudu, Y.P., and Acevedo-Arozena, A., et al.. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17: 1–382 doi:https://doi.org/10.1080/15548627.2020.1797280.10.1080/15548627.2020.1797280Search in Google Scholar

Lefebvre, C., Legouis, R., and Culetto, E. (2018). ESCRT and autophagies: endosomal functions and beyond. Semin. Cell Dev. Biol. 74: 21–28. https://doi.org/10.1016/j.semcdb.2017.08.014.Search in Google Scholar

Magde, D., Wong, R., and Seybold, P.G. (2002). Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75: 327–334. https://doi.org/10.1562/0031-8655(2002)075<0327:fqyatr>2.0.co;2.10.1562/0031-8655(2002)075<0327:FQYATR>2.0.CO;2Search in Google Scholar

Marshansky, V. and Futai, M. (2008). The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr. Opin. Cell Biol. 20: 415–426. https://doi.org/10.1016/j.ceb.2008.03.015.Search in Google Scholar

Mejlvang, J., Olsvik, H., Svenning, S., Bruun, J.A., Abudu, Y.P., Larsen, K.B., Brech, A., Hansen, T.E., Brenne, H., Hansen, T., et al.. (2018). Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. JCB (J. Cell Biol.) 217: 3640–3655. https://doi.org/10.1083/jcb.201711002.Search in Google Scholar

Papa, S., Luchetti, F., Canonico, B., Fusi, V., Formica, M., and Giorgi, L. (2019). Preparation of heterocyclic compounds as fluorescent probes for detection in biological systems. Patent Information: Apr 25, 2019 - WO 2019077527 A1, Application: Oct 17, 2018 - WO 2018-IB58063. Priority: Oct 17, 2017 - IT 2017-117226.Search in Google Scholar

Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., and Rubinsztein, D.C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12: 747–757. https://doi.org/10.1038/ncb2078.Search in Google Scholar

Razi, M., Chan, E.Y.W., and Tooze, S.A. (2009). Early endosomes and endosomal coatomer are required for autophagy. JCB (J. Cell Biol.) 185: 305–321. https://doi.org/10.1083/jcb.200810098.Search in Google Scholar

Schreij, A.M.A., Fon, E.A., and McPherson, P.S. (2016). Endocytic membrane trafficking and neurodegenerative disease. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-015-2105-x.Search in Google Scholar

Singh, R. and Cuervo, A.M. (2011). Autophagy in the cellular energetic balance. Cell Metabol. 13: 495–504. https://doi.org/10.1016/j.cmet.2011.04.004.Search in Google Scholar

Singh, R. and Cuervo, A.M. (2012). Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol., https://doi.org/10.1155/2012/282041.Search in Google Scholar

Traganos, F. and Darzynkiewicz, Z. (1994). Lysosomal proton pump activity: supravital cell staining with acridine orange differentiates leukocyte subpopulations. Methods Cell Biol. https://doi.org/10.1016/S0091-679X(08)61717-3.Search in Google Scholar

Uchiyama, S., Santa, T., Fukushima, T., Homma, H., and Imai, K. (1998). Effects of the substituent groups at the 4- and 7-positions on the fluorescence characteristics of benzofurazan compounds. Perkin Trans. 2: 2165–2173. https://doi.org/10.1039/a803641a.Search in Google Scholar

Uchiyama, S., Santa, T., and Imai, K. (1999). Semi-empirical PM3 calculation reveals the relationship between the fluorescence characteristics of 4,7-disubstituted benzofurazan compounds, the LUMO energy and the dipole moment directed from the 4- to the 7-position. Perkin Trans. 3: 569–576. https://doi.org/10.1039/a808010k.Search in Google Scholar

Wang, L., Wan, J., Zhao, Y., Yang, N., and Wang, D. (2019). Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 141: 2238–2241. https://doi.org/10.1021/jacs.8b13528.Search in Google Scholar PubMed

Xu, W., Zeng, Z., Jiang, J.H., Chang, Y.T., and Yuan, L. (2016). Discerning the chemistry in individual organelles with small-molecule fluorescent probes. Angew. Chem. Int. Ed. 55: 13658–13699. https://doi.org/10.1002/anie.201510721.Search in Google Scholar PubMed

Zhu, H., Fan, J., Du, J., and Peng, X. (2016). Fluorescent probes for sensing and imaging within specific cellular organelles. Acc. Chem. Res. 49: 2115–2126. https://doi.org/10.1021/acs.accounts.6b00292.Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2021-0204).


Received: 2021-04-01
Accepted: 2021-05-25
Published Online: 2021-06-07
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2021-0204/html
Scroll to top button