Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 13, 2021

Chebyshev spectral method for solving a class of local and nonlocal elliptic boundary value problems

  • Harendra Singh EMAIL logo

Abstract

This paper deals with a class of Bratu’s type, Troesch’s and nonlocal elliptic boundary value problems. Due to strong nonlinearity and presence of parameter δ, it is very difficult to solve these problems. Here we solve these classes of important equations using the Chebyshev spectral collocation method. We have provided the convergence of the proposed approximate method. The trueness of the method is shown by applying it to some illustrative examples. Results are compared with some known methods to highlight its neglectable error and high accuracy.


Corresponding author: Harendra Singh, Department of Mathematics, Post-Graduate College, Ghazipur 233001, Uttar Pradesh, India, E-mail:

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

[1] V. Ananthaswamy and L. Rajendran, “Analytical solutions of some two-point non-linear elliptic boundary value problems,” Appl. Math., vol. 3, no. 9, p. 1044, 2012. https://doi.org/10.4236/am.2012.39154.Search in Google Scholar

[2] Y. Lin, J. A. Enszer, and M. A. Stadtherr, “Enclosing all solutions of two-point boundary value problems for ODEs,” Comput. Chem. Eng., vol. 32, no. 8, pp. 1714–1725, 2008. https://doi.org/10.1016/j.compchemeng.2007.08.013.Search in Google Scholar

[3] J. Newman and W. Tiedemann, “Porous-electrode theory with battery applications,” AIChE J., vol. 21, no. 1, pp. 25–41, 1975. https://doi.org/10.1002/aic.690210103.Search in Google Scholar

[4] H. Singh, F. A. Ghassabzadeh, E. Tohidi, and C. Cattani, “Legendre spectral method for the fractional Bratu problem,” Math. Methods Appl. Sci., vol. 43, no. 9, pp. 5941–5952, 2020. https://doi.org/10.1002/mma.6334.Search in Google Scholar

[5] H. Singh, A. K. Singh, R. K. Pandey, D. Kumar, and J. Singh, “An efficient computational approach for fractional Bratu’s equation arising in electrospinning process,” Math. Methods Appl. Sci., vol. 44, no. 13, pp. 10225–10238, 2021. https://doi.org/10.1002/mma.7401.Search in Google Scholar

[6] A. M. Wazwaz, “A reliable study for extensions of the Bratu problem with boundary conditions,” Math. Methods Appl. Sci., vol. 35, no. 7, pp. 845–856, 2012. https://doi.org/10.1002/mma.1616.Search in Google Scholar

[7] R. Singh, G. Nelakanti, and J. Kumar, “Approximate solution of two-point boundary value problems using adomian decomposition method with Green’s function,” Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., vol. 85, no. 1, pp. 51–61, 2015. https://doi.org/10.1007/s40010-014-0170-4.Search in Google Scholar

[8] B. Batiha, “Numerical solution of Bratu-type equations by the variational iteration method,” Hacet. J. Math. Stat., vol. 39, no. 1, pp. 23–29, 2010.Search in Google Scholar

[9] N. Das, R. Singh, A. M. Wazwaz, and J. Kumar, “An algorithm based on the variational iteration technique for the Bratu-type and the Lane–Emden problems,” J. Math. Chem., vol. 54, no. 2, pp. 527–551, 2016. https://doi.org/10.1007/s10910-015-0575-6.Search in Google Scholar

[10] H. Caglar, N. Caglar, M. Özer, A. Valarıstos, and A. N. Anagnostopoulos, “B-spline method for solving Bratu’s problem,” Int. J. Comput. Math., vol. 87, no. 8, pp. 1885–1891, 2010. https://doi.org/10.1080/00207160802545882.Search in Google Scholar

[11] J. Rashidinia, K. Maleknejad, and N. Taheri, “Sinc–Galerkin method for numerical solution of the Bratu’s problems,” Numer. Algorithm., vol. 62, no. 1, pp. 1–11, 2013. https://doi.org/10.1007/s11075-012-9560-3.Search in Google Scholar

[12] R. Jalilian, “Non-polynomial spline method for solving Bratu’s problem,” Comput. Phys. Commun., vol. 181, no. 11, pp. 1868–1872, 2010. https://doi.org/10.1016/j.cpc.2010.08.004.Search in Google Scholar

[13] S. Abbasbandy, M. Hashemi, and C.-S. Liu, “The Lie-group shooting method for solving the Bratu equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 11, pp. 4238–4249, 2011. https://doi.org/10.1016/j.cnsns.2011.03.033.Search in Google Scholar

[14] M. Kumar and N. Yadav, “Numerical solution of Bratu’s problem using multilayer perceptron neural network method,” Natl. Acad. Sci. Lett., vol. 38, no. 5, pp. 425–428, 2015. https://doi.org/10.1007/s40009-015-0359-3.Search in Google Scholar

[15] R. Buckmire, “Application of a Mickens finite-difference scheme to the cylindrical Bratu–Gelfand problem,” Numer. Methods Part. Differ. Equ., vol. 20, no. 3, pp. 327–337, 2004. https://doi.org/10.1002/num.10093.Search in Google Scholar

[16] M. Hajipour, A. Jajarmi, and D. Baleanu, “On the accurate discretization of a highly nonlinear boundary value problem,” Numer. Algorithm., vol. 79, pp. 1–17, 2017. https://doi.org/10.1007/s11075-017-0455-1.Search in Google Scholar

[17] P. Roul and H. Madduri, “An optimal iterative algorithm for solving Bratu-type problems,” J. Math. Chem., vol. 57, no. 2, pp. 583–598, 2019. https://doi.org/10.1007/s10910-018-0965-7.Search in Google Scholar

[18] P. Roul and K. Thula, “A fourth-order B-spline collocation method and its error analysis for Bratu-type and Lane–Emden problems,” Int. J. Comput. Math., vol. 96, no. 1, pp. 85–104, 2019. https://doi.org/10.1080/00207160.2017.1417592.Search in Google Scholar

[19] D. Gidaspow and B. S. Baker, “A model for discharge of storage batteries,” J. Electrochem. Soc., vol. 120, no. 8, pp. 1005–1010, 1973. https://doi.org/10.1149/1.2403617.Search in Google Scholar

[20] A. Kouibia, M. Pasadas, Z. Belhaj, and A. Hananel, “The variational spline method for solving Troesch’s problem,” J. Math. Chem., vol. 53, no. 3, pp. 868–879, 2015. https://doi.org/10.1007/s10910-014-0462-6.Search in Google Scholar

[21] E. S. Weibel, “On the confinement of a plasma by magnetostatic fields,” Phys. Fluids, vol. 2, no. 1, pp. 52–56, 1959. https://doi.org/10.1063/1.1724391.Search in Google Scholar

[22] S. Roberts and J. Shipman, “On the closed form solution of Troesch’s problem,” J. Comp. Phys., vol. 21, no. 3, pp. 291–304, 1976. https://doi.org/10.1016/0021-9991(76)90026-7.Search in Google Scholar

[23] S. Momani, S. Abuasad, and Z. Odibat, “Variational iteration method for solving nonlinear boundary value problems,” Appl. Math. Comput., vol. 183, no. 2, pp. 1351–1358, 2006. https://doi.org/10.1016/j.amc.2006.05.138.Search in Google Scholar

[24] S.-H. Chang, “A variational iteration method for solving Troesch’s problem,” J. Comput. Appl. Math., vol. 234, no. 10, pp. 3043–3047, 2010. https://doi.org/10.1016/j.cam.2010.04.018.Search in Google Scholar

[25] S. Khuri, “A numerical algorithm for solving Troesch’s problem,” Int. J. Comput. Math., vol. 80, no. 4, pp. 493–498, 2003. https://doi.org/10.1080/0020716022000009228.Search in Google Scholar

[26] E. Deeba, S. Khuri, and S. Xie, “An algorithm for solving boundary value problems,” J. Comp. Phys., vol. 159, no. 2, pp. 125–138, 2000. https://doi.org/10.1006/jcph.2000.6452.Search in Google Scholar

[27] S.-H. Chang, “Numerical solution of Troesch’s problem by simple shooting method,” Appl. Math. Comput., vol. 216, no. 11, pp. 3303–3306, 2010. https://doi.org/10.1016/j.amc.2010.04.056.Search in Google Scholar

[28] M. Zarebnia and M. Sajjadian, “The Sinc–Galerkin method for solving Troesch’s problem,” Math. Comput. Model., vol. 56, no. 9, pp. 218–228, 2012. https://doi.org/10.1016/j.mcm.2011.11.071.Search in Google Scholar

[29] X. Feng, L. Mei, and G. He, “An efficient algorithm for solving Troesch’s problem,” Appl. Math. Comput., vol. 189, no. 1, pp. 500–507, 2007. https://doi.org/10.1016/j.amc.2006.11.161.Search in Google Scholar

[30] J. R. Cannon and D. J. Galiffa, “A numerical method for a nonlocal elliptic boundary value problem,” J. Integr. Equ. Appl., vol. 20, no. 2, pp. 243–261, 2008. https://doi.org/10.1007/978-0-387-68805-3_11.Search in Google Scholar

[31] J. R. Cannon and D. J. Galiffa, “On a numerical method for a homogeneous, nonlinear, nonlocal, elliptic boundary value problem,” Nonlinear Anal. Theor. Methods Appl., vol. 74, no. 5, pp. 1702–1713, 2011. https://doi.org/10.1016/j.na.2010.10.042.Search in Google Scholar

[32] W. Themistoclakis and A. Vecchio, “On the numerical solution of some nonlinear and nonlocal boundary value problems,” Appl. Math. Comput., vol. 255, pp. 135–146, 2015. https://doi.org/10.1016/j.amc.2014.08.004.Search in Google Scholar

[33] A. Luongo and G. Piccardo, “Non-linear galloping of sagged cables in 1:2 internal resonance,” J. Sound Vib., vol. 214, no. 5, pp. 915–940, 1998. https://doi.org/10.1006/jsvi.1998.1583.Search in Google Scholar

[34] A. Luongo and G. Piccardo, “A continuous approach to the aeroelastic stability of suspended cables in 1: 2 internal resonance,” J. Vib. Contr., vol. 14, no. 1, pp. 135–157, 2008. https://doi.org/10.1177/1077546307079404.Search in Google Scholar

[35] R. Stańczy, “Nonlocal elliptic equations,” Nonlinear Anal. Theor. Methods Appl., vol. 47, no. 5, pp. 3579–3584, 2001.10.1016/S0362-546X(01)00478-3Search in Google Scholar

[36] S. Khuri and A. M. Wazwaz, “A variational approach for a class of nonlocal elliptic boundary value problems,” J. Math. Chem., vol. 52, no. 5, pp. 1324–1337, 2014. https://doi.org/10.1007/s10910-014-0312-6.Search in Google Scholar

[37] R. Singh, “An iterative technique for solving a class of local and nonlocal elliptic boundary value problems,” J. Math. Chem., 2020. https://doi.org/10.1007/s10910-020-01159-6.Search in Google Scholar

[38] H. Singh and H. M. Srivastava, “Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients,” Physica A, vol. 523, pp. 1130–1149, 2019. https://doi.org/10.1016/j.physa.2019.04.120.Search in Google Scholar

[39] C. S. Singh, H. Singh, S. Singh, and D. Kumar, “An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics,” Physica A, vol. 525, pp. 0–8, 2019. https://doi.org/10.1016/j.physa.2019.03.085.Search in Google Scholar

[40] H. Singh and C. S. Singh, “Stable numerical solutions of fractional partial differential equations using Legendre scaling functions operational matrix,” Ain Shams Eng. J., vol. 9, pp. 717–725, 2018. https://doi.org/10.1016/j.asej.2016.03.013.Search in Google Scholar

[41] H. Singh, “Jacobi collocation method for the fractional advection‐dispersion equation arising in porous media,” Numer. Methods Part. Differ. Equ., 2020. https://doi.org/10.1002/num.22674.Search in Google Scholar

[42] H. Singh, H. M. Srivastava, and D. Kumar, “A reliable numerical algorithm for the fractional vibration equation,” Chaos, Solit. Fractals, vol. 103, pp. 131–138, 2017. https://doi.org/10.1016/j.chaos.2017.05.042.Search in Google Scholar

[43] H. Singh, “Numerical simulation for fractional delay differential equations,” Int. J. Dyn. Contr., vol. 9, pp. 463–474, 2021.10.1007/s40435-020-00671-6Search in Google Scholar

[44] H. Singh, R. K. Pandey, and D. Kumar, “A reliable numerical approach for nonlinear fractional optimal control problems, I,” J. Nonlinear Sci. Numer. Simulat., vol. 22, no. 5, pp. 495–507, 2021.Search in Google Scholar

[45] H. Singh, “A new stable algorithm for fractional Navier–Stokes equation in polar coordinate,” Int. J. Algorithm. Comput. Math., vol. 3, no. 4, pp. 3705–3722, 2017. https://doi.org/10.1007/s40819-017-0323-7.Search in Google Scholar

[46] H. Singh, “Approximate solution of fractional vibration equation using Jacobi polynomials,” Appl. Math. Comput., vol. 317, pp. 85–100, 2018. https://doi.org/10.1016/j.amc.2017.08.057.Search in Google Scholar

[47] T. J. Rivlin, An Introduction to the Approximation of Functions, New York, USA, Dover Publications, 1981.Search in Google Scholar

[48] E. Kreyszig, Introductory Functional Analysis with Applications, New Jersey, USA, John Wiley & Sons, 1978.Search in Google Scholar

[49] S. S. Ezz-Eldien, “New quadrature approach based on operational matrix for solving a class of fractional variational problems,” J. Comp. Phys., vol. 317, pp. 362–381, 2016. https://doi.org/10.1016/j.jcp.2016.04.045.Search in Google Scholar

Received: 2020-10-14
Revised: 2021-07-07
Accepted: 2021-08-05
Published Online: 2021-09-13

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2020-0235/html
Scroll to top button