Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2021

Enhanced Infrared Heating of Thermoplastic Composite Sheets for Thermoforming Processes

  • M. Längauer EMAIL logo , G. Zitzenbacher , C. Burgstaller and C. Hochenauer

Abstract

Thermoforming of thermoplastic composites attracts increasing attention in the community due to the mechanical performance of these materials and their recyclability. Yet there are still difficulties concerning the uniformity of the heating and overheating of parts prior to forming. The need for higher energy efficiencies opens new opportunities for research in this field. This is why this study presents a novel experimental method to classify the efficiency of infrared heaters in combination with different thermoplastic composite materials. In order to evaluate this, different organic sheets are heated in a laboratory scale heating station until a steady state condition is reached. This station mimics the heating stage of an industrial composite thermoforming device and allows sheets to slide on top of the pre-heated radiator at a known distance. By applying thermodynamic balances, the efficiency of chosen parameters and setups is tested. The tests show that long heating times are required and the efficiency of the heating is low. Furthermore, the efficiency is strongly dependent on the distance of the heater to the sheet, the heater temperature and also the number of heating elements. Yet, using a full reflector system proves to have a huge effect and the heating time can be decreased by almost 50%.


Manuel Längauer, University of Applied Sciences Upper Austria, School of Engineering, Stelzhamerstraße 23, 4600 Wels, Austria


Acknowledgements

The authors are grateful to the State Government of Upper Austria and the European Regional Development Fund for providing financial support for the project: “ProFVK" in the programme EFRE-IWB 2020.

References

Ambrogio, G., Conte, R., Gagliardi, F., De Napoli, L., Filice, L. and Russo, P., “A New Approach for Forming Polymeric Composite Structures”, Compos. Struct., 204, 445–453 (2018), DOI:10.1016/j.compstruct.2018.07.10610.1016/j.compstruct.2018.07.106Search in Google Scholar

Arora, C. P.: Thermodynamics, 12th Edition, Tata Mcgraw-Hill Publishing Company Ltd., New Delhi (2007)Search in Google Scholar

Buffel, B., Amerijckx, M., Hamblok, M., Van Mieghem, B., Desplentere, F. and Van Bael, A., “Experimental and Computational Analysis of the Heating Step during Thermoforming of Thermoplastics”, Key Eng. Mater., 651–653, 1003–1008 (2015), DOI: 10.4028/www.scientific.net/KEM.651-653.1003Search in Google Scholar

Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L. and Chen, B., “Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications”, Prog. Polym. Sci., 59, 41–85 (2016), DOI:10.1016/j.progpolymsci.2016.03.00110.1016/j.progpolymsci.2016.03.001Search in Google Scholar

Cheng. C. F., Tsui, Y. C. and Clyne, T. W., “Application of a Three-Dimensional Heat Flow Model to Treat Laser Drilling of Carbon Fibre Composites”, Acta Mater., 46, 4273–4285 (1998), DOI:10.1016/S1359-6454(98)00090-110.1016/S1359-6454(98)00090-1Search in Google Scholar

Dinenno, P. J., Drysdale, D., Beyler, C. L., Walton, W. D., Custer, R. L. P., Hall, J. R. Jr. and Watts, J. M. Jr.: SFPE Handbook of Fire Protection Engineering, 3rd Edition, National Fire Protection Association, Inc., New York, Appendix B, A-23-A-24 (2002)Search in Google Scholar

Duarte, F. M., Covas, J. A., “Heating Thermoplastics Sheets for Thermoforming: Solution to Direct and Inverse Problems”, Plast., Rubber Compos. Process. Appl., 26, 213–221, (1997)Search in Google Scholar

Duarte, F. M., Covas, J. A., “IR Sheet Heating in Roll Fed Thermoforming: Part 1 – Solving Direct and Inverse Heating Problems”, Plast. Rubber Compos., 31, 307–317, (2002), DOI:10.1179/14658010222500653010.1179/146580102225006530Search in Google Scholar

Erchiqui, F., “Application of Genetic and Simulated Annealing Algorithms for Optimization of Infrared Heating Stage in Thermoforming Process”, Appl. Therm. Eng., 128, 1263–1272 (2018), DOI:10.1016/j.applthermaleng.2017.09.10210.1016/j.applthermaleng.2017.09.102Search in Google Scholar

Erchiqui, F., Souli, M. and Yedder, R. B., “Nonisothermal Finite-Element Analysis of Thermoforming of Polyethylene Terephthalate Sheet: Incomplete Effect of the Forming Stage”, Polym. Eng. Sci., 47, 2129–2144 (2007), DOI:10.1002/pen.2094710.1002/pen.20947Search in Google Scholar

Hemmen, A., “Direktbestromung von Kohlenstofffasern zur Minimierung von Zykluszeit und Energieaufwand bei der Herstellung von Karbonbauteilen”, PhD Thesis, University of Augsburg, Augsburg, Germany (2016)Search in Google Scholar

Hendrix, J. W., Szeto, R., Nosker, T., Lynch-Branzoi, J. and Emge, T. J., “Evaluation of Exfoliated Graphite to Graphene in Polyamide 66 Using Novel High Shear Elongational Flow”, Polymers, 10, 1399 (2018), PMid:30961324; DOI:10.3390/polym1012139910.3390/polym10121399Search in Google Scholar

Incropera, F. P., Dewitt, D. P.: Fundamentals of Heat and Mass Transfer, 4th Edition, Wiley, New York (2000)Search in Google Scholar

Kreith, F., Manglik, R. M. and Bohn, M. S.: Principles of Heat Transfer, 7th Edition, Cengage Learning, Stamford, p. 19 (2011)Search in Google Scholar

Lord Rayleigh Strutt, J. W., 3rd Baron Rayleigh, “On the Influence of Obstacles Arranged in Rectangular Order upon the Properties of a Medium”, Philosophical Magazine, 34, 481–502 (1892), DOI:10.1080/1478644920862036410.1080/14786449208620364Search in Google Scholar

Monaghan, P. F., Brogan,M. T. and Oosthuizen, P. H., “Heat Transfer in an Autoclave for Processing Thermoplastic Composites”, Compos. Manuf., 2, 233–242 (1991), DOI:10.1016/0956-7143(91)90145-710.1016/0956-7143(91)90145-7Search in Google Scholar

Nowacki, J, Neitzel, M., “Thermoforming of Reinforced Thermoplastic Stiffened Structure “, Polym. Compos., 21, 531–538 (2000), DOI:10.1002/pc.1020810.1002/pc.10208Search in Google Scholar

Ostgathe, M., “Zur Serienfertigung Gewebeverstärkter Halbzeuge für die Umformung”, PhD Thesis, University of Kaiserslautern, Kaiserslautern, Germany (1997)Search in Google Scholar

Pietrak, K., Wisniewski, T. S., “A Review of Models for Ective Thermal Conductivity of Composite Materials”, Journal of Power Technologies, 95, 14–24 (2015)Search in Google Scholar

Pühringer, J. F., Zitzenbacher, G. and Spreitzer, C., “Study of Heat Absorption in Thermoforming for Transparent and Filled Polystyrene”, Int. Polym. Proc., 28, 14–23 (2013), DOI:10.3139/217.337010.3139/217.3370Search in Google Scholar

Pühringer, J. F., Zitzenbacher, G., “The Influence of Thermal Material Properties on the Heating Step of Pipe Belling”, Proceedings of the Europe-Africa Regional Meeting of the Polymer Processing Society (PPS 2009), Larnaca, Cyprus, p. 6 (2009)Search in Google Scholar

Pühringer, J. F., Zitzenbacher, G. and Spreitzer, C., “Study of Heat Absorption in the Thermoforming Process of Transparent and Filled Polystyrene”, Proceedings of 27th Annual Meeting of the Polymer Processing Society, Marrakesh, Morocco, p. 8 (2011)Search in Google Scholar

Sangwook, S., Pitz, J., Gerzeski, R. H., Roy, A. K. and Vernon, J. P., “Experimentally-Validated Computational Model for Temperature Evolution within Laser Heated Fiber-Reinforced Polymer Matrix Composites”, Compos. Struct., 207, 966–973 (2019), DOI:10.1016/j.compstruct.2018.09.04110.1016/j.compstruct.2018.09.041Search in Google Scholar

Schmidt, F. M., Le Maoult, Y. and Monteix, S., “Modelling of Infrared Heating of Thermoplastic Sheet Used in Thermoforming Process”, J. Mater. Process. Technol., 143–144, 225–231 (2003), DOI:10.1016/S0924-0136(03)00291-710.1016/S0924-0136(03)00291-7Search in Google Scholar

Throne, J.: Technology of Thermoforming, 1st Edition, Hanser Publishers, Munich, Vienna, New York (1996), DOI:10.3139/9783446402478.fm10.3139/9783446402478.fmSearch in Google Scholar

Thyageswaran, S., “Radiation View Factor for Co-Axial and Unequal Rectangles in Parallel Planes”, Heat Transfer Eng., 38, 1522–1529 (2017), DOI:10.1080/01457632.2016.125509310.1080/01457632.2016.1255093Search in Google Scholar

Vaidya, U. K., Chawla, K. K., “Processing of Fibre Reinforced Thermoplastic Composites”, Int. Mater. Rev., 53, 185–218 (2008), DOI:10.1179/174328008X32522310.1179/174328008X325223Search in Google Scholar

Received: 2019-12-04
Accepted: 2020-06-29
Published Online: 2021-03-09
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/ipp-2020-3923/html
Scroll to top button