Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 5, 2005

Diagnostische Bedeutung zirkulierender DNA- Fragmente in der Onkologie. Diagnostic importance of circulating DNA fragments in oncology

  • Stefan Holdenrieder , Joachim von Pawel , Andreas Schalhorn and Petra Stieber
From the journal LaboratoriumsMedizin

Abstract

The past decade witnessed an increasing interest in assessing circulating DNA in the plasma and serum of patients with malignant and non-malignant diseases. This might be due to the availability of new and sensitive methods for the determination of qualitative and quantitative changes in circulating DNA. As, previously, tumor-specific mutations or epigenetic modifications have been detected predominantly in tissue specimens, the appealing possibility to use less invasive though specific methods for tumor diagnosis was a noticeable incentive for the exploration of circulating DNA.

A considerable part of the circulating DNA, which is mostly present in serum and plasma as nucleosomal DNA, is released during apoptotic cell death. Because the rate of apoptosis is deregulated in many pathological situations such as degenerative, traumatic, ischemic, inflammatory, and malignant diseases, and because many cytotoxic therapies aim at reducing the cancer cell number by apoptosis, the cell death product “circulating DNA” might serve as an attractive and appropriate biochemical correlative.

In this review, the physiological and pathophysiological background of the arrangement of DNA as nucleosomes and of its release into circulation is shown. Further, the metabolism of circulating DNA in plasma and serum and its role in the pathogenesis of various diseases is discussed. Finally, the diagnostic relevance of qualitative and quantitative changes in circulating DNA for screening, differential diagnosis, prognosis, monitoring of systemic therapies, early prediction of therapy response and detection of recurrence in malignant diseases is reviewed. Concluding, some methodical considerations regarding the measurement of circulating DNA are given.

Zusammenfassung

In den letzten 10 Jahren ist das Interesse an zirkulierender DNA im Plasma und Serum von Patienten mit onkologischen und nicht-onkologischen Erkrankungen sprunghaft angestiegen. Ein Grund dafür könnte die Verfügbarkeit von neuen sensitiven Methoden zur Erfassung quantitativer und qualitativer Veränderungen von zirkulierender DNA sein. Da tumorspezifische Mutationen oder epigenetische Modifikationen bislang meist im Gewebe nachgewiesen wurden, beflügelte die Aussicht auf eine weniger invasive und dennoch spezifische Tumordiagnostik die Erforschung der zirkulierenden DNA.

Besonders bedeutsam ist dabei die Tatsache, dass ein erheblicher Anteil der zirkulierenden DNA, die im Plasma und Serum zumeist als nukleosomale DNA vorliegt, beim apoptotischen Zelltod freigesetzt wird. Da in vielen pathologischen Situationen wie etwa bei degenerativen, traumatischen, ischämischen, inflammatorischen und malignen Erkrankungen die Apoptoserate dereguliert ist und diese bei zytotoxischen Therapien gezielt beeinflusst werden soll, bietet sich das Zelltodprodukt “zirkulierende DNA” als geeignetes biochemisches Korrelat an.

Im Rahmen dieses Übersichtsartikels werden zunächst die physiologischen und pathophysiologischen Grundlagen der als Nukleosomen organisierten DNA und ihrer Freisetzung in die Blutzirkulation aufgezeigt. Anschließend werden das Auftreten zirkulierender DNA bei verschiedenen Erkrankungen sowie der Metabolismus und die pathophysiologische Bedeutung nukleosomaler DNA erörtert. Sodann wird die diagnostische Relevanz von qualitativen und quantitativen Veränderungen der zirkulierenden DNA in der Onkologie diskutiert und ihre Eignung für das Screening, die Differentialdiagnose, Prognose, das Monitoring systemischer Therapien, die frühzeitige Prädiktion des Therapieansprechens und die Erkennung von Tumorrezidiven bewertet. Abschließend werden einige methodische Anmerkungen zur Bestimmung zirkulierender DNA gegeben.

:

Literatur

1 Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell1999;98:285–94.10.1016/S0092-8674(00)81958-3Search in Google Scholar

2 Nelson SM, Ferguson LR, Denny WA. DNA and the chromosome-varied targets for chemotherapy. Cell Chromosome2004;3:2.10.1186/1475-9268-3-2Search in Google Scholar

3 Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature1997;389:251–60.10.1038/38444Search in Google Scholar

4 Luger K. Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev2003;13:127–35.10.1016/S0959-437X(03)00026-1Search in Google Scholar

5 Grunstein M. Histone acetylation in chromatin structure and transcription. Nature1997;389:349–52.10.1038/38664Search in Google Scholar

6 Hagmann M. How chromatin changes its shape. Science1999;285:1200–2.10.1126/science.285.5431.1200Search in Google Scholar

7 Strahl BD, Allis CD. The language of covalent histone modifications. Nature2000;403:41–5.10.1038/47412Search in Google Scholar

8 Bjorklund S, Almouzni G, Davidson I, Nightingale KP, Weiss K. Global transcription regulators of eukaryotes. Cell1999;96:759–67.10.1016/S0092-8674(00)80586-3Search in Google Scholar

9 Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell2003;11:1587–98.10.1016/S1097-2765(03)00231-4Search in Google Scholar

10 Lichtenstein AV, Melkonyan HS, Tomei LD, Umansky SR. Circulating nucleic acids and apoptosis. Ann N Y Acad Sci2001;945:239–49.10.1111/j.1749-6632.2001.tb03892.xSearch in Google Scholar PubMed

11 Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res2001;61:1659–65.Search in Google Scholar

12 Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, et al. The origin and mechanism of circulating DNA. Ann N Y Acad Sci2000;906:161–8.10.1111/j.1749-6632.2000.tb06608.xSearch in Google Scholar

13 Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony?Biochem Biophys Res Commun1999;266:699–717.10.1006/bbrc.1999.1888Search in Google Scholar

14 Holdenrieder S, Stieber P. Apoptotic markers in cancer. Clin Biochem2004;37:605–17.10.1016/j.clinbiochem.2004.05.003Search in Google Scholar

15 Leist M, Jäätelä M. Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol2001;2:1–10.10.1038/35085008Search in Google Scholar

16 Nicotera P, Leist M, Single B, Volbracht C. Execution of apoptosis: converging or diverging pathways?Biol Chem1999;380:1035–40.10.1515/BC.1999.129Search in Google Scholar

17 Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer1994;73:2013–26.10.1002/1097-0142(19940415)73:8<2013::AID-CNCR2820730802>3.0.CO;2-JSearch in Google Scholar

18 Wyllie AH. Cell death: the significance of apoptosis. Int Rev Cytol1980;68:251–306.10.1016/S0074-7696(08)62312-8Search in Google Scholar

19 Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol1995;146:3–15.Search in Google Scholar

20 Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol2000;182:41–9.10.1002/(SICI)1097-4652(200001)182:1<41::AID-JCP5>3.0.CO;2-7Search in Google Scholar

21 Tanner JE. Nucleosomes activate NF-kappaB in endothelial cells for induction of the proangiogenic cytokine IL-8. Int J Cancer2004;112:155–60.10.1002/ijc.20390Search in Google Scholar

22 Krammer PH. CD95's deadly mission in the immune system. Nature2000;407:789–95.10.1038/35037728Search in Google Scholar

23 Hengartner MO. The biochemistry of apoptosis. Nature2000;407:770–6.10.1038/35037710Search in Google Scholar

24 Krammer PH. CD95 (APO-1/Fas)-mediatied apoptosis: live and let die. Adv Immunol1999;71:163–210.10.1016/S0065-2776(08)60402-2Search in Google Scholar

25 Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature1998;391:43–50.10.1038/34112Search in Google Scholar

26 Kanduc D, Mittelman A, Serpico R, Sinigaglia E, Sinha AA, Natale C, et al. Cell death: apoptosis versus necrosis [review]. Int J Oncol2002;21:165–70.10.3892/ijo.21.1.165Search in Google Scholar

27 Hengartner MO. Apoptosis: Corraling the corpses. Cell2001;104:325–8.10.1016/S0092-8674(01)00219-7Search in Google Scholar

28 Halicka HD, Bedner E, Darzynkiewicz Z. Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp Cell Res2000;260:248–56.10.1006/excr.2000.5027Search in Google Scholar PubMed

29 van Nieuwenhuijze AE, van Lopik T, Smeenk RJ, Aarden LA. Time between onset of apoptosis and release of nucleosomes from apoptotic cells: putative implications for systemic lupus erythematosus. Ann Rheum Dis2003;62:10–4.10.1136/ard.62.1.10Search in Google Scholar PubMed PubMed Central

30 Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l'homme. CR Acad Sci Paris1948;142:241–3.Search in Google Scholar

31 Steinman CR. Free DNA in serum and plasma from normal adults. J Clin Invest1975;56:512–5.10.1172/JCI108118Search in Google Scholar PubMed PubMed Central

32 Sorenson GD, Pribish DM, Valone PH, Memoli VA, Bzik DJ, Yao SL. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev1994;1:67–71.Search in Google Scholar

33 Anker P. Quantitative aspects of plasma/serum DNA in cancer patients. Ann N Y Acad Sci2000;906:5–7.10.1111/j.1749-6632.2000.tb06580.xSearch in Google Scholar PubMed

34 Amoura Z, Piette JC, Chabre H, Cacoub P, Papo T, Wechsler B, et al. Circulating plasma levels of nucleosomes in patients with systemic lupus erythematosus: correlation with serum antinucleosome antibody titers and absence of clear association with disease activity. Arthritis Rheum1997;40:2217–25.10.1002/art.1780401217Search in Google Scholar PubMed

35 Shapiro B, Chakrabarty M, Cohn EM, Leon SA. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer1983;51:2116–20.10.1002/1097-0142(19830601)51:11<2116::AID-CNCR2820511127>3.0.CO;2-SSearch in Google Scholar

36 Holdenrieder S, Stieber P, Bodenmueller H, Fertig G, Fuerst H, Schmeller N, et al. Nucleosomes in serum as a marker for cell death. Clin Chem Lab Med2001;39:596–605.10.1515/CCLM.2001.095Search in Google Scholar

37 Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res1977;37:646–50.Search in Google Scholar

38 Maebo A. Plasma DNA level as a tumor marker in primary lung cancer. Nihon Kyobu Shikkan Gakkai Zasshi1990;28:1085–91.Search in Google Scholar

39 Fournie GJ, Courtin JP, Laval F, Chale JJ, Pourrat JP, Pujazon MC, et al. Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours. Cancer Lett1995;91:221–7.10.1016/0304-3835(95)03742-FSearch in Google Scholar

40 Kuroi K, Tanaka C, Toi M. Plasma nucleosome levels in node-negative breast cancer patients. Breast Cancer1999;6:361–4.10.1007/BF02966454Search in Google Scholar

41 Holdenrieder S, Stieber P, Foerg T, Kuehl M, Schulz L, Busch M, et al. Apoptosis in serum of patients with solid tumours. Anticancer Res1999;19:2721–4.Search in Google Scholar

42 Kuroi K, Tanaka C, Toi M. Clinical significance of plasma nucleosome levels in cancer patients. Int J Oncol2001;19:143–8.10.3892/ijo.19.1.143Search in Google Scholar

43 Holdenrieder S, Stieber P, Bodenmueller H, Busch M, Fertig G, Fuerst H, et al. Nucleosomes in serum of patients with benign and malignant diseases. Int J Cancer2001;95:114–20.10.1002/1097-0215(20010320)95:2<114::AID-IJC1020>3.0.CO;2-QSearch in Google Scholar

44 Holdenrieder S, Stieber P, Bodenmueller H, Busch M, von Pawel J, Schalhorn A, et al. Circulating nucleosomes in serum. Ann N Y Acad Sci2001;945:93–102.10.1111/j.1749-6632.2001.tb03869.xSearch in Google Scholar

45 Sozzi G, Conte D, Mariani L, Lo Vullo S, Roz L, Lombardo C, et al. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res2001;61:4675–8.Search in Google Scholar

46 Ziegler A, Zangemeister-Wittke U, Stahel RA. Circulating DNA: a new diagnostic gold mine?Cancer Treatment Rev2002;28:255–71.10.1016/S0305-7372(02)00077-4Search in Google Scholar

47 Trejo-Becerril C, Perez-Cardenas E, Trevino-Cuevas H, Taja-Chayeb L, Garcia-Lopez P, Segura-Pacheco B, et al. Circulating nucleosomes and response to chemotherapy: an in vitro, in vivo and clinical study on cervical cancer patients. Int J Cancer2003;104:663–8.10.1002/ijc.11003Search in Google Scholar

48 Anker P, Mulcahy H, Stroun M. Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies?Int J Cancer2003;103:149–52.10.1002/ijc.10791Search in Google Scholar

49 Sozzi G, Conte D, Leon M, Ciricione R, Roz L, Ratcliffe C, et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol2003;21:3902–8.10.1200/JCO.2003.02.006Search in Google Scholar PubMed

50 Lo YM, Chan LY, Lo KW, Leung SF, Zhang J, Chan AT, et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res1999;59:1188–91.Search in Google Scholar

51 Herrera LJ, Raja S, Gooding WE, El-Hefnawy T, Kelly L, Luketich JD, et al. Quantitative analysis of circulating plasma DNA as a tumor marker in thoracic malignancies. Clin Chem2005;51:113–8.10.1373/clinchem.2004.039263Search in Google Scholar PubMed

52 Gormally E, Hainaut P, Caboux E, Airoldi L, Autrup H, Malaveille C, et al. Amount of DNA in plasma and cancer risk: a prospective study. Int J Cancer2004;111:746–9.10.1002/ijc.20327Search in Google Scholar PubMed

53 Zeerleder S, Zwart B, Wuillemin WA, Aarden LA, Groeneveld AB, Caliezi C, et al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med2003;31:1947–51.10.1097/01.CCM.0000074719.40109.95Search in Google Scholar PubMed

54 Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clin Chem2000;46:319–23.10.1093/clinchem/46.3.319Search in Google Scholar

55 Lam NY, Rainer TH, Chan LY, Joynt GM, Lo YM. Time course of early and late changes in plasma DNA in trauma patients. Clin Chem2003;49:1286–91.10.1373/49.8.1286Search in Google Scholar PubMed

56 Rainer TH, Wong LK, Lam W, Yuen E, Lam NY, Metreweli C, Lo YM. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem2003;49:562–9.10.1373/49.4.562Search in Google Scholar PubMed

57 Fishbein TM, Liu J, Wang L, Li Y, Boros P. Increased apoptosis is specific for acute rejection in rat small bowel transplant. J Surg Res2004;119:51–5.10.1016/j.jss.2003.12.028Search in Google Scholar PubMed

58 Atamaniuk J, Vidotto C, Tschan H, Bachl N, Stuhlmeier KM, Muller MM. Increased concentrations of cell-free plasma DNA after exhaustive exercise. Clin Chem2004;50:1668–70.10.1373/clinchem.2004.034553Search in Google Scholar PubMed

59 Rumore P, Muralidhar B, Lin M, Lai C, Steinman CR. Hemodialysis as a model for studying endogenous plasma DNA: oligonucleosome-like structure and clearance. Clin Exp Immunol1992;90:56–62.10.1111/j.1365-2249.1992.tb05831.xSearch in Google Scholar PubMed PubMed Central

60 Giacona MB, Ruben GC, Iczkowski KA, Roos TB, Porter DM, Sorenson GD. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas1998;17:89–97.10.1097/00006676-199807000-00012Search in Google Scholar PubMed

61 Ng EK, Tsui NB, Lam NY, Chiu RW, Yu SC, Wong SC, et al. Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem2002;48:1220–7.10.1093/clinchem/48.8.1212Search in Google Scholar

62 Burlingame RW, Volzer MA, Harris J, Du Clos TW. The effect of acute phase proteins on clearance of chromatin from the circulation of normal mice. J Immunol1996;156:4783–8.Search in Google Scholar

63 Gauthier VJ, Tyler LN, Mannik M. Blood clearance kinetics and liver uptake of mononucleosomes in mice. J Immunol1996;156:1151–6.Search in Google Scholar

64 Emlen W, Mannik M. Clearance of circulating DNA-anti-DNA immune complexes in mice. J Exp Med1982;155:1210–5.10.1084/jem.155.4.1210Search in Google Scholar PubMed PubMed Central

65 Emlen W, Mannik M. Effect of DNA size and strandedness on the in vivo clearance and organ localization of DNA. Clin Exp Immunol1984;56:185–92.Search in Google Scholar

66 Emlen W, Burdick G. Clearance and organ localization of small DNA anti-DNA immune complexes in mice. J Immunol1988;140:1816–22.Search in Google Scholar

67 Macanovic M, Lachmann PJ. Measurement of deoxyribonuclease I (DNase) in the serum and urine of systemic lupus erythematosus (SLE)-prone NZB/NZW mice by a new radial enzyme diffusion assay. Clin Exp Immunol1997;108:220–6.10.1046/j.1365-2249.1997.3571249.xSearch in Google Scholar PubMed PubMed Central

68 Amoura Z, Chabre H, Koutouzov S, Lotton C, Cabrespines A, Bach JF, Jacob L. Nucleosome-restricted antibodies are detected before anti-dsDNA and/or antihistone antibodies in serum of MRL-Mp lpr/lpr and +/+ mice, and are present in kidney eluates of lupus mice with proteinuria. Arthritis Rheum1994;37:1684–8.10.1002/art.1780371118Search in Google Scholar PubMed

69 Burlingame RW, Boey ML, Starkebaum G, Rubin RL. The central role of chromatin in autoimmune responses to histones and DNA in systemic lupus erythematosus. J Clin Invest1994;94:184–92.10.1172/JCI117305Search in Google Scholar PubMed PubMed Central

70 Amoura Z, Koutouzov S, Piette JC. The role of nucleosomes in lupus. Curr Opin Rheumatol2000;12:369–73.10.1097/00002281-200009000-00003Search in Google Scholar PubMed

71 Odaka C, Mizuochi T. Role of macrophage lysosomal enzymes in the degradation of nucleosomes of apoptotic cells. J Immunol1999;163:5346–52.Search in Google Scholar

72 Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature2000;407:784–8.10.1038/35037722Search in Google Scholar PubMed

73 Du Clos TW, Marnell L, Zlock LR, Burlingame RW. Analysis of the binding of C-reactive protein to chromatin subunits. J Immunol1991;146:1220–5.Search in Google Scholar

74 Du Clos TW. The interaction of C-reactive protein and serum amyloid P component with nuclear antigens. Mol Biol Rep1996;23:253–60.10.1007/BF00351177Search in Google Scholar PubMed

75 Fournie GJ. Circulating DNA and lupus nephritis. Kidney Int1988;33:487–97.10.1038/ki.1988.25Search in Google Scholar PubMed

76 Garcia-Olmo D, Garcia-Olmo DC, Ontanon J, Martinez E, Vallejo M. Tumor DNA circulating in the plasma might play a role in metastasis. The hypothesis of the genometastasis. Histol Histopathol1999;14:1159–64.Search in Google Scholar

77 Garcia-Olmo DC, Ruiz-Piqueras R, Garcia-Olmo D. Circulating nucleic acids in plasma and serum (CNAPS) and its relation to stem cells and cancer metastasis: state of the issue. Histol Histopathol2004;19:575–83.Search in Google Scholar

78 Le Lann-Terisse AD, Fournie GJ, Benoist H. Nucleosome-dependent escape of tumor cells from natural-killer-mediated lysis: nucleosomes are taken up by target cells and act at a postconjugation level. Cancer Immunol Immunother1997;43:337–44.10.1007/s002620050342Search in Google Scholar

79 Stroun M, Anker P, Lyautey J, Lederrey C, Maurice P. Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol1987;23:707–12.10.1016/0277-5379(87)90266-5Search in Google Scholar

80 Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology1989;46:318–22.10.1159/000226740Search in Google Scholar

81 Jen J, Wu L, Sidransky D. An overview on the isolation and analysis of circulating tumor DNA in plasma and serum. Ann N Y Acad Sci2000;906:8–12.10.1111/j.1749-6632.2000.tb06581.xSearch in Google Scholar

82 Johnson PJ, Lo YM. Plasma nucleic acids in the diagnosis and management of malignant disease. Clin Chem2002;48:1186–93.10.1093/clinchem/48.8.1186Search in Google Scholar

83 Sorenson GD. A review of studies on the detection of mutated KRAS2 sequences as tumor markers in plasma/serum of patients with gastrointestinal cancer. Ann N Y Acad Sci2000;906:13–6.10.1111/j.1749-6632.2000.tb06582.xSearch in Google Scholar

84 Kopreski MS, Benko FA, Borys DJ, Khan A, McGarrity TJ, Gocke CD. Somatic mutation screening: identification of individuals harboring K-ras mutations with the use of plasma DNA. J Nat Cancer Inst2000;92:918–23.10.1093/jnci/92.11.918Search in Google Scholar

85 Sorenson GD, Pribish DM, Valone PH, Memoli VA, Bzik DJ, Yao SL. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev1994;1:67–71.Search in Google Scholar

86 Yamada T, Nakamori S, Ohzato H, Oshima S, Aoki T, Higaki N, et al. Detection of K-ras gene mutations in plasma DNA of patients with pancreatic adenocarcinoma: correlation with clinicopathological features. Clin Cancer Res1998;4:1527–32.Search in Google Scholar

87 Mulcahy HE, Lyautey J, Lederrey C, Chen XQ, Anker P, Alstead EM, et al. A prospective study of K-ras mutations in the plasma of pancreatic cancer patients. Clin Cancer Res1998;4:271–5.Search in Google Scholar

88 Anker P, Lefort F, Vasioukhin V, Lyautey J, Lederrey C, Chen XQ, et al. K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology1997:112:1114–20.10.1016/S0016-5085(97)70121-5Search in Google Scholar

89 Mulcahy HE, Lyautey J, Lederrey C, Chen XQ, Lefort F, Vasioukhin V, et al. Plasma DNA K-ras mutations in patients with gastrointestinal malignancies. Ann N Y Acad Sci2000;906:25–8.10.1111/j.1749-6632.2000.tb06585.xSearch in Google Scholar

90 Cooper CA, Carby FA, Bubb VJ, Lamb D, Kerr KM, Wyllie AH. The pattern of K-ras mutation in pulmonary adenocarcinoma defines a new pathway of tumour development in the human lung. J Pathol1997;181:401–4.10.1002/(SICI)1096-9896(199704)181:4<401::AID-PATH799>3.0.CO;2-YSearch in Google Scholar

91 Schneider J, Presek P, Braun A, Löffler S, Woitowitz HJ. Serum ras (p21) as a marker for occupationally derived lung cancer?Clin Chem Lab Med2000;38:301–5.10.1515/CCLM.2000.042Search in Google Scholar PubMed

92 Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol1994;86:774–9.10.1111/j.1365-2141.1994.tb04828.xSearch in Google Scholar PubMed

93 Bevilacqua RAU, Nunes DN, Stroun M, Anker P. The use of genetic instability as a clinical tool for cancer diagnosis. Sem Cancer Biol1998;8:447–53.10.1006/scbi.1998.0122Search in Google Scholar PubMed

94 Chen XQ, Stroun M, Magnenat JL, Nicod LP, Kurt AM, Lyautey J, et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nature Med1996;2:1033–5.10.1038/nm0996-1033Search in Google Scholar PubMed

95 Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nature Med1996;2:1035–7.10.1038/nm0996-1035Search in Google Scholar PubMed

96 Sozzi G, Musso K, Ratcliffe C, Goldstraw P, Pierotti MA, Pastorino U. Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients: a prospect for early diagnosis. Clin Cancer Res1999;5:2689–92.Search in Google Scholar

97 Gonzales R, Silva JM, Sanchez A, Dominguez G, Garcia JM, Chen XQ, et al. Microsatellite alterations and TP 53 mutations in plasma DNA of small-cell lung cancer patients: follow-up study and prognostic significance. Ann Oncol2000;11:1097–104.10.1023/A:1008305412635Search in Google Scholar

98 Coulet F, Blons H, Cabelguenne A, Lecomte T, Lacourreye O, Brasnu D, et al. Detection of plasma tumor DNA in head and neck squamous cell carcinoma by microsatellite typing and p53 mutation analysis. Cancer Res2000;60:707–11.Search in Google Scholar

99 Goessl C, Heicappell R, Munker R, Anker P, Stroun M, Krause H, et al. Microsatellite analysis of plasma DNA from patients with clear cell renal carcinoma. Cancer Res1998;58:4728–32.10.1097/00005392-199904010-00578Search in Google Scholar

100 Steiner G, Schoenberg MP, Linn JF, Mao L, Sidransky D. Detection of bladder cancer recurrence by microsatellite analysis of urine. Nature Med1997;3:621–4.10.1038/nm0697-621Search in Google Scholar PubMed

101 Mayall F, Fairweather S, Wilkins R, Chang B, Nicholls R. Microsatellite abnormalities in plasma of patients with breast carcinoma: concordance with the primary tumour. J Clin Pathol1999;52:363–6.10.1136/jcp.52.5.363Search in Google Scholar PubMed PubMed Central

102 Shaw JA, Smith BM, Walsh T, Johnson S, Primrose L, Slade MJ, et al. Microsatellite alterations plasma DNA of primary breast cancer patients. Clin Cancer Res2000;6:1119–24.Search in Google Scholar

103 Nakayama T, Taback B, Nguyen DH, Chi DD, Morton DL, Fujiwara Y, et al. Clinical significance of circulating DNA microsatellite markers in plasma of melanoma patients. Ann N Y Acad Sci2000;906:87–98.10.1111/j.1749-6632.2000.tb06596.xSearch in Google Scholar PubMed

104 Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer2002;2:210–9.10.1038/nrc755Search in Google Scholar

105 Chen XQ, Bonnefoi H, Diebold-Berger S, Lyautey J, Lederrey C, Faltin-Traub E, et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res1999;5:2297–303.Search in Google Scholar

106 Anker P, Stroun M. Tumor-related alterations in circulating DNA, potential for diagnosis, prognosis and detection of minimal residual disease. Leukemia2001;15:289–91.10.1038/sj.leu.2402016Search in Google Scholar

107 Lo YM. Circulating nucleic acids in plasma and serum: an overview. Ann N Y Acad Sci2001;945:1–8.10.1111/j.1749-6632.2001.tb03858.xSearch in Google Scholar

108 Herman JG. Hypermethylation of tumor suppressor genes in cancer. Sem Cancer Biol2000;9:359–67.10.1006/scbi.1999.0138Search in Google Scholar

109 Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med2003;349:2042–54.10.1056/NEJMra023075Search in Google Scholar

110 Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res1998;72:141–96.10.1016/S0065-230X(08)60702-2Search in Google Scholar

111 Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet2000;16:168–74.10.1016/S0168-9525(99)01971-XSearch in Google Scholar

112 Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res1999;59:67–70.Search in Google Scholar

113 Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res2001;61:3225–9.10.1007/BF02979467Search in Google Scholar

114 Herman JG, Baylin SB. Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol2000;249:35–54.10.1007/978-3-642-59696-4_3Search in Google Scholar PubMed

115 Kopreski MS, Benko FA, Kwak LW, Gocke CD. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res1999;5:1961–5.Search in Google Scholar

116 Kopreski MS, Benko FA, Gocke CD. Circulating RNA as a tumor marker: detection of 5T4 mRNA in breast and lung cancer patient serum. Ann N Y Acad Sci2001;945:172–8.10.1111/j.1749-6632.2001.tb03882.xSearch in Google Scholar

117 Chen XQ, Bonnefoi H, Pelte MF, Lyautey J, Lederrey C, Movarekhi S, et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res2000;6:3823–6.Search in Google Scholar

118 Poon LM, Leung TN, Lau TK, Lo YM. Presence of fetal RNA in maternal plasma. Clin Chem2000;46:1832–4.10.1093/clinchem/46.11.1832Search in Google Scholar

119 Gal S, Fidler C, Lo YM, Chin K, Moore J, Harris AL, Wainscoat JS. Detection of Mammaglobin mRNA in the plasma of breast cancer patients. Ann N Y Acad Sci2001;945:192–4.10.1111/j.1749-6632.2001.tb03885.xSearch in Google Scholar

120 Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science2000;287:2017–9.10.1126/science.287.5460.2017Search in Google Scholar

121 Sidransky D. Circulating DNA: What we know and what we need to learn. Ann N Y Acad Sci2000;906:1–4.10.1111/j.1749-6632.2000.tb06579.xSearch in Google Scholar

122 Bianchi DW, Flint AF, Pizzimenti MF, Knoll JH, Latt SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci USA1990;87:3279–83.10.1073/pnas.87.9.3279Search in Google Scholar

123 Bianchi DW, Lo YM. Fetomaternal cellular and plasma DNA trafficking: the Yin and the Yang. Ann N Y Acad Sci2001;945:119–31.10.1111/j.1749-6632.2001.tb03872.xSearch in Google Scholar

124 Sekizawa A, Samura O, Zhen DK, Falco V, Farina A, Bianchi DW. Apoptosis in fetal nucleated erythrocytes circulating in maternal blood. Prenat Diagn2000;20:886–9.10.1002/1097-0223(200011)20:11<886::AID-PD942>3.0.CO;2-4Search in Google Scholar

125 Lambert NC, Stevens AM, Tylee TS, Erickson TD, Furst DE, Nelson JL. From the simple detection of microchimerism in patients with autoimmune diseases to its implication in pathogenesis. Ann N Y Acad Sci2001;945:164–71.10.1111/j.1749-6632.2001.tb03881.xSearch in Google Scholar

126 Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS. Presence of fetal DNA in maternal plasma and serum. Lancet1997;350:485–7.10.1016/S0140-6736(97)02174-0Search in Google Scholar

127 Bianchi DW. Fetal DNA in maternal plasma: the plot thickens and the placental barrier thins. Am J Hum Genet1998;62:763–4.10.1086/301809Search in Google Scholar

128 Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet1998;352:1904–5.10.1016/S0140-6736(05)60395-9Search in Google Scholar

129 Lo YM. Fetal DNA in maternal plasma: biology and diagnostic applications. Clin Chem2000;46:1903–6.10.1093/clinchem/46.12.1903Search in Google Scholar

130 Poon LM, Leung TN, Lau TK, Lo YM. Prenatal detection of fetal Down's syndrome from maternal plasma. Lancet2000;356:1819–20.10.1016/S0140-6736(00)03237-2Search in Google Scholar

131 Zhong XY, Holzgreve W, Hahn S. Circulatory fetal and maternal DNA in pregnancies at risk and those affected by preeclampsia. Ann N Y Acad Sci2001;945:138–40.10.1111/j.1749-6632.2001.tb03874.xSearch in Google Scholar PubMed

132 Lo YM, Chan LY, Chan AT, Leung SF, Lo KW, Zhang J, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res1999;59:5452–5.Search in Google Scholar

133 Lo YM, Chan WY, Ng EK, Chan LY, Lai PB, Tam JS, et al. Circulating Epstein-Barr virus DNA in the serum of patients with gastric carcinoma. Clin Cancer Res2001;7:1856–9.Search in Google Scholar

134 Lei KI, Chan LYS, Chan WY, Johnson PJ, Lo YM. Diagnostic and prognostic implications of circulating cell-free Epstein-Barr Virus DNA in natural killer / T-cell lymphoma. Clin Cancer Res2002;8:29–34.Search in Google Scholar

135 Grinstein S, Preciado MV, Gattuso P, Chabay PA, Warren WH, De Matteo E, et al. Demonstration of Epstein-Barr Virus in carcinomas of various sites. Cancer Res2002;62:4876–8.Search in Google Scholar

136 Gautschi O, Bigosch C, Huegli B, Jermann M, Marx A, Chasse E, et al. Circulating deoxyribonucleic Acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J Clin Oncol2004;22:4157–64.10.1200/JCO.2004.11.123Search in Google Scholar PubMed

137 Silva JM, Silva J, Sanchez A, Garcia JM, Dominguez G, Provencio M, et al. Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clin Cancer Res2002;8:3761–6.Search in Google Scholar

138 Gal S, Fidler C, Lo YM, Taylor M, Han C, Moore J, et al. Quantitation of circulating DNA in the serum of breast cancer patients by real-time PCR. Br J Cancer2004;90:1211–5.10.1038/sj.bjc.6601609Search in Google Scholar PubMed PubMed Central

139 Lo YMD, Chan AT, Chan LY, Leung SF, Lam CW, Huang DP, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res2000;60:6878–81.Search in Google Scholar

140 Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, et al. Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res2004;10:5981–7.10.1158/1078-0432.CCR-04-0625Search in Google Scholar PubMed

141 Holdenrieder S, Stieber P. Therapy control in oncology by circulating nucleosomes. Ann N Y Acad Sci2004;1022:211–6.10.1196/annals.1318.032Search in Google Scholar PubMed

142 Kremer A, Wilkowski R, Holdenrieder S, Nagel D, Stieber P, Seidel D. Nucleosomes in serum of patients with pancreatic cancer during the course of radiochemotherapy. Tumour Biol2005;26:44–19.10.1159/000084339Search in Google Scholar PubMed

143 Lo YMD, Leung SF, Chan LY, Chan AT, Lo KW, Johnson PJ, Huang DP. Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma. Cancer Res2000;60:2351–5.Search in Google Scholar

144 Lo YMD, Chan LY, Chan AT, Leung SF, Lo KW, Zhang J, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res1999;59:5452–5.Search in Google Scholar

145 Holdenrieder S, Stieber P, Chan LY, Geiger S, Kremer A, Nagel D, et al. Circulating nucleic acids in plasma and serum – comparison of ELISA and quantitative PCR. Clin Chem2003;49:35.Search in Google Scholar

146 Holdenrieder S, Mueller S, Olaposi Y, Stieber P. Stability of nucleosomes in serum. Clin Chem2003;49:39.Search in Google Scholar

Published Online: 2005-07-05
Published in Print: 2005-04-01

© Walter de Gruyter

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1515/JLM.2005.019/html
Scroll to top button