Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 26, 2018

A Survey of Dynamic Bandwidth Assignment Schemes for TDM-Based Passive Optical Network

  • Rizwan Aslam Butt EMAIL logo , M. Waqar Ashraf , M Faheem and Sevia M Idrus

Abstract

In time division, multiple access (TDMA)-based passive optical network (PONs), a dynamic bandwidth assignment (DBA) is necessary for efficient utilization of the available bandwidth of the upstream link. An efficient DBA scheme can improve the upstream performance of a traffic class of an ONU in two ways. First, it can increase the bandwidth assignment to it by efficiently utilizing the available bandwidth. Secondly, it can reduce the channel and frame idle time by increasing the polling frequency and by assigning extra surplus bandwidth not used by the other ONUs. Many DBA schemes have been reported for both ITU PONs (GPON and XGPON) and IEEE PONs (EPON and 10 G EPON). In this study, we explain the impact of DBA scheme on the upstream performance of PON and then do a thorough survey of both PON standards, categorize the DBA schemes and review them critically. Based on the literature review we also give our opinion on the most suitable DBA scheme for both type PONs on the basis of upstream delays, frame loss and bandwidth utilization efficiency.

References

1. Sanou B. ICT Facts and Figures. The world in 2015. Geneva, Switzerland, 2015.Search in Google Scholar

2. Effenberger FJ. Industrial trends and roadmap of access. J Lightwave Technol. 2017;35(5):1142–46.10.1109/JLT.2016.2636246Search in Google Scholar

3. Muciaccia T, Gargano F, Passaro VMN. Passive Optical Access Networks: State of the Art and Future Evolution, Photonics, 2014;1(4):323–346.10.3390/photonics1040323Search in Google Scholar

4. Butt RA, Hasunah Mohammad S, Idrus SM, Rehman SU. Evolution of access network from copper to PON – Current status. ARPN J Eng Appl Sci. 2015;10(18):1–10.Search in Google Scholar

5. Holmberg T. Analysis of EPONs under the static priority scheduling scheme with fixed transmission times. In: 2nd IEEE Conference on Next Generation Internet Design and Engineering, 2006: 192–99.10.1109/NGI.2006.1678241Search in Google Scholar

6. ITU-T Recommendation G.987.3 10-Gigabit-capable passive optical networks (XG-PON): transmission convergence (TC) layer specification. 2014;2.0:1–146.Search in Google Scholar

7. IEEE 1904.1-2013. IEEE Standard for service interoperability in ethernet passive optical networks (SIEPON), 2013.Search in Google Scholar

8. Kramer G, Mukherjee B, Pesavento G. IPACT: A dynamic protocol for an Ethernet PON (EPON). IEEE Commun Mag. 2002;40(2):74–80.10.1109/35.983911Search in Google Scholar

9. Lannoo B, Verslegers L, Colle D, Pickavet M, Demeester P, Gagnaire M. Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs. In: 2007 Fourth International Conference on Broadband Communications, Networks and Systems (BROADNETS ’07), 2007:486–94.10.1109/BROADNETS.2007.4550473Search in Google Scholar

10. Aurzada F, Scheutzow M, Herzog M, Maier M, Reisslein M. Delay analysis of Ethernet passive optical networks with gated service. J Opt Netw. 2008;7(1):25.10.1364/JON.7.000025Search in Google Scholar

11. Kramer G, Mukherjee B, Pesavento G. Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network. Photonic Netw Commun. 2002;4(1):89–107.10.1023/A:1012959023043Search in Google Scholar

12. Bai X, Shami A, Ye Y. Delay analysis of ethernet passive optical networks with quasi-leaved polling and gated service scheme. In: IEEE second International Conference on Access Networks & Workshops, 2008: 25–41.Search in Google Scholar

13. Dixit A, Lannoo B, Das G, Colle D, Pickavet M, Demeester P. Dynamic bandwidth allocation with SLA awareness for QoS in ethernet passive optical networks. J Opt Commun Netw. 2013;5(3):240–53.10.1364/JOCN.5.000240Search in Google Scholar

14. Kramer G, Mukherjee B, Dixit S, Ye Y, Hirth R. Supporting differentiated classes of service in Ethernet passive optical networks. J Opt Netw. 2002;1(8):280–298.Search in Google Scholar

15. Dixit A, Das G, Lannoo B, Colle D, Pickavet M, Demeester P. Jitter performance for QoS in Ethernet passive optical networks. In: 37th European Conference and Exhibition on Optical Communication (ECOC). 2011;1:27–29.10.1364/ECOC.2011.We.10.P1.116Search in Google Scholar

16. Ma M, Zhu Y, Cheng T. A bandwidth guaranteed polling MAC protocol for Ethernet passive optical networks. In: IEEE Annual Joint Conference of Computer and Communications., 2003.10.1109/INFCOM.2003.1208655Search in Google Scholar

17. McGarry MP, Reisslein M. Ethernet PONs: A survey of dynamic bandwidth allocation (DBA) algorithms. IEEE Commun Mag. 2004;42(8):S8–S15.10.1109/MCOM.2004.1321381Search in Google Scholar

18. Chadi SD, Assi M, Ye Y. Dynamic bandwidth allocation for quality-of-service over ethernet PONs. IEEE J Selected Areas Commun. 2003;21(9):1467–1477.10.1109/JSAC.2003.818837Search in Google Scholar

19. Choi SY, Lee S, Lee T-J, Chung MY, Choo H. Double-phase polling algorithm based on partitioned ONU subgroups for high utilization in EPONs. J Opt Commun Netw. 2009;1(5):484.10.1364/JOCN.1.000484Search in Google Scholar

20. Chen W-P, Wang W-F, Hwang W-S. Adaptive dynamic bandwidth allocation algorithm with sorting report messages for Ethernet passive optical network. IET Commun. 2010;4(18):2230.10.1049/iet-com.2009.0587Search in Google Scholar

21. Lai JR, Huang HY, Chen WP, Wang LK, Cho MY. Design and analytical analysis of a novel DBA algorithm with dual-polling tables in EPON. Math Probl Eng. 2015;2015(Article ID 919278):1–10.10.1155/2015/919278Search in Google Scholar

22. Jiménez T, Merayo N, Andrés A, Durán RJ, Aguado JC, de Miguel I, Fernández P, Lorenzo RM, Abril EJ. An auto-tuning PID control system based on genetic algorithms to provide delay guarantees in passive optical networks. Expert Syst Appl. 2015;42(23):9211–20.10.1016/j.eswa.2015.07.078Search in Google Scholar

23. Miyoshi H, Inoue T, Yamashita K. QoS-aware dynamic bandwidth allocation scheme in Gigabit-Ethernet passive optical networks. In: 2004 IEEE International Conference Communications (IEEE Cat No04CH37577). 2004;1(1):90–94.10.1109/ICC.2004.1312458Search in Google Scholar

24. Lai JR, Chen WP. High utilization dynamic bandwidth allocation algorithm based on sorting report messages with additive-polling thresholds in EPONs. Opt Switch Netw. 2015;18(P1):81–85.10.1016/j.osn.2015.04.003Search in Google Scholar

25. Xiong H, Cao M. Broadcast polling–an uplink access scheme for the Ethernet passive optical network. J Opt Netw. 2004;3(10):728.10.1364/JON.3.000728Search in Google Scholar

26. I. S. M. and S. K. S. Nurul Asyikin Mohd Radzi, Norashidah, Mohammed Hayder Al-Mansoori. Intelligent dynamic bandwidth allocation algorithm in upstream EPONs. J Opt Commun Netw. 2010;2(3):148–58.10.1364/JOCN.2.000148Search in Google Scholar

27. Song H, Kim BW, Mukherjee B. Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON. IEEE J Selected Areas Commun. 2009;27(2):134–42.10.1109/GLOCOM.2007.466Search in Google Scholar

28. Helmy A, Fathallah H, Mouftah H. Interleaved polling versus multi-thread polling for bandwidth allocation in long-reach PONs. J Opt Commun Netw. 2012;4(3):210–18.10.1364/JOCN.4.000210Search in Google Scholar

29. H. Wang et al.. An inter multi-thread polling for bandwidth allocation in long-reach pon. In: 14th International Conference on Optical Communications and Networks (ICOCN), 2015: 14–16.Search in Google Scholar

30. Mercian A, McGarry MP, Reisslein M. Offline and online multi-thread polling in long-reach PONs: a critical evaluation. J Lightwave Technol. 2013;31(12):2018–28.10.1109/JLT.2013.2262766Search in Google Scholar

31. Ahmed J, Chen J, Wosinska L, Chen B, Mukherjee B. Efficient inter-thread scheduling scheme for long-reach passive optical networks. IEEE Commun Mag. 2013;51(2):35–43.10.1109/MCOM.2013.6461187Search in Google Scholar

32. De Andrade M, Chen J, Skubic B, Ahmed J, Wosinska L. Enhanced IPACT: solving the over-granting problem in long-reach EPON. Telecommunication Syst. 2013;54(2):137–46.10.1007/s11235-013-9722-1Search in Google Scholar

33. Skubic B, Chen J, Ahmed J, Chen B, Wosinska L, Mukherjee B. Dynamic bandwidth allocation for long-reach PON: overcoming performance degradation. IEEE Commun Mag. 2010;48(11):100–08.10.1109/MCOM.2010.5621975Search in Google Scholar

34. Byun H-J, Nho J-M, Lim J-T. Dynamic bandwidth allocation algorithm in Ethernet passive optical networks. Electron Lett. 2003;39(13):1001–02.10.1049/el:20030635Search in Google Scholar

35. Luo Y, Ansari N. Limited sharing with traffic prediction for dynamic bandwidth allocation and QoS provisioning over Ethernet passive optical networks. J Opt Netw. 2005;4(9):561–72.10.1364/JON.4.000561Search in Google Scholar

36. Turna ÖC, Aydin MA, Atmaca T. Half cycling dynamic bandwidth allocation with prediction on EPON. In: IEEE Symposium on Computers and Communications (ISCC), 2012: 898–902.10.1109/ISCC.2012.6249416Search in Google Scholar

37. Fan T, Mouftah HT. A QoS-based dynamic bandwidth allocation algorithm for EPONs. In: IEEE 23rd Biennial Symposium on Communications, 2006: 140–43.10.1109/BSC.2006.1644590Search in Google Scholar

38. Zheng J. Efficient bandwidth allocation algorithm for Ethernet passive optical networks. IEE Proc Commun. 2006;153(5):464–68.10.1049/ip-com:20050358Search in Google Scholar

39. Nguyen TD, Eido T, Atmaca T. An Enhanced QoS-enabled dynamic bandwidth allocation mechanism for ethernet PON. In: IEEE First International Conference on Emerging Network Intelligence, 2009: 135–40.10.1109/EMERGING.2009.20Search in Google Scholar

40. Turna OC, Aydin MA, Zaim AH, Atmaca T. A new dynamic bandwidth allocation algorithm based on online-offline mode for EPON. Opt Switch Netw. 2015;15:29–43.10.1016/j.osn.2014.04.003Search in Google Scholar

41. Mahmud YA, Radzi NAM, Abdullah F, Din NM. Fuzzy-logic based NSR DBA for upstream GPON. In: EEE 12th Malaysia International Conference on Communications (MICC), 2015: 169–74.10.1109/MICC.2015.7725428Search in Google Scholar

42. Bang H, Kim S, Lee D-S, Park C-S. Dynamic bandwidth allocation method for high link utilization to support NSR ONUs in GPON. In: 12th International Conference on Advanced Communication Technology (ICACT), 2010;1:1–6.Search in Google Scholar

43. Ozimkiewicz J, Ruepp S, Dittmann L, Wessing H, Smolorz S. Evaluation of dynamic bandwidth allocation algorithms in GPON networks. WSEAS Trans Circuits Syst. 2010;9(2):111–20.Search in Google Scholar

44. Kanonakis K, Tomkos I. Offset-based scheduling with flexible intervals for evolving GPON networks. J Lightwave Technol. 2009;27(15):3259–68.10.1109/JLT.2009.2021412Search in Google Scholar

45. Leligou HC, Linardakis C, Kanonakis K, Angelopoulos JD, Orphanoudakis T. Efficient medium arbitration of FSAN-compliant GPONs. Int J Commun Syst. 2006;19(5):603–17.10.1002/dac.761Search in Google Scholar

46. Han M-S, Yoo H, Yoon B-Y, Kim B, Koh J-S. Efficient dynamic bandwidth allocation for FSAN-compliant GPON. J Opt Netw. 2008;7(8):783–95.10.1364/JON.7.000783Search in Google Scholar

47. Han MS, Yoo H, Lee DS. Development of efficient dynamic bandwidth allocation algorithm for XGPON. Etri J. 2013;35(1):18–26.10.4218/etrij.13.0112.0061Search in Google Scholar

48. Angelopoulos JD, Leligou HC, Argyriou T, Zontos S, Ringoot E, Van Caenegem T. Efficient transport of packets with QoS in an FSAN-Aligned GPON. IEEE Commun Mag. 2004;42(2):92–98.10.1109/MCOM.2003.1267106Search in Google Scholar

49. Liu Y, Zhang G, Li Q. An improved dynamic bandwidth allocation algorithm for GPON. In: Symposium on Photonics and Optoelectronics, 2009: 1–4.10.1109/SOPO.2009.5230241Search in Google Scholar

50. Han M. Simple and feasible dynamic bandwidth and polling allocation for XGPON. ICACT Transactions Advanced Communications Technology (TACT). 2013;2(5):298–304.10.1109/ICACT.2014.6779186Search in Google Scholar

51. Skubic B, Chen J, Ict KTH. A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON. IEEE Commun Mag. 2009;47(3):40–48.10.1109/MCOM.2009.4804388Search in Google Scholar

52. Skubic B, Chen B, Chen JCJ, Ahmed J, Wosinska L. Improved scheme for estimating T-CONT bandwidth demand in status reporting DBA for NG-PON. In: Asia Communications and Photonics conference and Exhibition (ACP), 2009: 1–6.10.1364/ACP.2009.TuT2Search in Google Scholar

53. Sales V, Segarra J, Prat J. An efficient dynamic bandwidth allocation for GPON long-reach extension systems. Opt Switch Netw. 2014;14:69–77.10.1016/j.osn.2014.01.009Search in Google Scholar

54. Segarra J, Sales V, Prat J. GPON scheduling disciplines under multi-service bursty traffic and Long-Reach approach. In: 12th International Conference on Transparent Optical Networks (ICTON), 2010: 2–7.10.1109/ICTON.2010.5549032Search in Google Scholar

55. Lee SK, Jang JW, Bae MH. Development and performance evaluation of A BR-DBA algorithm. In: 3rd International Conference on Convergence and Hybrid Information Technology (ICCIT), 2008: 1103–08.10.1109/ICCIT.2008.219Search in Google Scholar

56. Man-Soo H. Iterative dynamic bandwidth allocation for XGPON. In: 14th International Conference on Advanced Communication Technology (ICACT), 2012: 1035–40.Search in Google Scholar

57. Han M-S. Dynamic bandwidth allocation with high utilization for XG-PON. In: 16th International Conference on Advanced Communication Technology, 2014: 994–97.10.1109/ICACT.2014.6779107Search in Google Scholar

58. Jiang J, Senior JM, Jiang J, Senior JM. A New efficient dynamic MAC protocol for the delivery of multiple services over GPON. Photonic Netw Commun. 2009;18:227–36.10.1007/s11107-009-0186-xSearch in Google Scholar

59. Lee JY, Hwang SN. Dynamic bandwidth assignment MAC protocol for differentiated services over GPON. Electron Lett. 2006;42(11):653–55.10.1049/el:20061268Search in Google Scholar

60. Gravalos I, Yiannopoulos K, Papadimitriou G, Varvarigos EA. Burst-by-burst dynamic bandwidth allocation for XG-PONs. IET Netw. 2015;5(3):47–55.10.1049/iet-net.2015.0070Search in Google Scholar

61. Hwang I, Lee J, Yeh T. Polling cycle time analysis for waited-based DBA in GPONs. In: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), 2013;II: 6–11.10.1007/978-94-007-7684-5_10Search in Google Scholar

62. Qi-Yu Z, Bin L, Run-Ze W. A dynamic bandwidth allocation scheme for GPON based on traffic prediction. In: 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012: 2043–46.10.1109/FSKD.2012.6234355Search in Google Scholar

63. Kyriakopoulos CA, Papadimitriou GI. Predicting and allocating bandwidth in the optical access architecture XG- PON. Opt Switch Netw. 2017;25:91–99.10.1016/j.osn.2017.03.005Search in Google Scholar

64. Angelopoulos JD, Leligou H-C, Argyriou T, Zontos S. Prioritized multiplexing of traffic accessing an FSAN-compliant GPON. In: International Conference on Research in Networking, 2004: 890–901.10.1007/978-3-540-24693-0_73Search in Google Scholar

65. Butt RA, Idrus SM, Qureshi KN. Improved dynamic bandwidth allocation algorithm for XGPON. J Opt Commun Netw. 2017;9(1):87–97.10.1364/JOCN.9.000087Search in Google Scholar

66. Butt RA, Idrus SM, Rehman S-U, Shah PMA, Zulkifli N. Comprehensive polling and scheduling mechanism for long reach gigabit passive optical network. J Opt Commun. 2017;(12):1–12.10.1515/joc-2017-0026Search in Google Scholar

67. Sadon SK, Din NM, Al-Mansoori MH, Radzi NA, Mustafa IS, Yaacob M, et al. Dynamic hierarchical bandwidth allocation using Russian Doll Model in EPON. Comput Electr Eng. 2012;38(6):1480–89.10.1016/j.compeleceng.2012.05.002Search in Google Scholar

68. Bai X, Shami A, Assi C. On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks. Comput Commun. 2006;29(11):2123–35.10.1016/j.comcom.2006.01.005Search in Google Scholar

69. Chiu C-T, Wang Y-C. Request-based dynamic bandwidth allocation of gigabit passive optical network. Opt Photonics J. 2013;3(2):165–70.10.4236/opj.2013.32B040Search in Google Scholar

70. Chang C, Kourtessis P, Senior JM. GPON service level agreement based dynamic bandwidth assignment protocol. Electron Lett. 2006;42(20):1173–75.10.1049/el:20062326Search in Google Scholar

Received: 2017-10-23
Accepted: 2017-12-27
Published Online: 2018-01-26
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/joc-2017-0186/html
Scroll to top button