Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) December 10, 2020

Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh

  • Mohammed A. Elmakki ORCID logo EMAIL logo , Orbett T. Alexander ORCID logo , Johan A. Venter and Andreas Roodt

Abstract

C24H19AsNO3Rh, triclinic, P1 (no. 2), a = 9.1358(5) Å, b = 9.6478(6) Å, c = 12.4509(7) Å, α = 92.303(2)°, β = 106.281(2)°, γ = 99.137(2)°, V = 1035.89(1) Å3, Z = 2, Rgt(F) = 0.0336, wRref(F2) = 0.0900, T = 100 K.

CCDC no.: 2039781

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow plate
Size0.25 × 0.18 × 0.05 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:2.44 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:28.3°, 99 %
N(hkl)measured, N(hkl)unique, Rint:13050, 5046, 0.052
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4283
N(param)refined:271
Programs:SHELX [1], Bruker [2], Diamond [3], OLEX2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
As10.34390 (3)0.29682 (3)0.68910 (2)0.01458 (9)
C1−0.0073 (3)0.2082 (3)0.9250 (2)0.0159 (6)
C2−0.0990 (4)0.1868 (4)0.9968 (3)0.0216 (7)
H2−0.0962460.1068111.0389370.026*
C3−0.1927 (4)0.2794 (4)1.0074 (3)0.0228 (7)
H3−0.2548510.2646851.0570150.027*
C4−0.1972 (4)0.3968 (4)0.9444 (3)0.0215 (6)
H4−0.2646180.4607780.9494250.026*
C5−0.1043 (4)0.4182 (3)0.8763 (3)0.0197 (6)
H5−0.1062100.4979690.8338990.024*
C60.3112 (4)0.0396 (4)0.8152 (3)0.0245 (7)
C70.4641 (3)0.4813 (3)0.7527 (2)0.0158 (6)
C80.5769 (4)0.5467 (3)0.7066 (3)0.0195 (6)
H80.5917180.5036150.6413960.023*
C90.6679 (4)0.6757 (4)0.7567 (3)0.0221 (7)
H90.7438270.7212230.7249480.027*
C100.6476 (4)0.7374 (3)0.8527 (3)0.0225 (7)
H100.7102980.8247720.8871290.027*
C110.5357 (4)0.6713 (4)0.8985 (3)0.0234 (7)
H110.5225750.7133990.9647060.028*
C120.4426 (4)0.5441 (3)0.8482 (3)0.0187 (6)
H120.3646690.5003320.8789260.022*
C130.4939 (3)0.2123 (3)0.6375 (3)0.0168 (6)
C140.6020 (4)0.1499 (3)0.7128 (3)0.0224 (7)
H140.5984760.1444130.7880660.027*
C150.7154 (4)0.0955 (4)0.6785 (3)0.0287 (8)
H150.7887270.0521460.7299020.034*
C160.7208 (4)0.1049 (4)0.5689 (3)0.0311 (8)
H160.7992030.0692230.5457100.037*
C170.6133 (4)0.1656 (4)0.4931 (3)0.0274 (8)
H170.6170640.1707120.4178140.033*
C180.4992 (4)0.2195 (3)0.5275 (3)0.0201 (6)
H180.4249500.2611560.4755620.024*
C190.2027 (3)0.3333 (3)0.5494 (2)0.0161 (6)
C200.0878 (4)0.2215 (4)0.4912 (3)0.0223 (7)
H200.0814450.1320050.5203830.027*
C21−0.0172 (4)0.2407 (4)0.3907 (3)0.0269 (7)
H21−0.0940720.1637630.3504050.032*
C22−0.0102 (4)0.3715 (4)0.3490 (3)0.0242 (7)
H22−0.0830310.3846880.2805970.029*
C230.1031 (4)0.4835 (4)0.4071 (3)0.0218 (6)
H230.1076480.5733540.3783670.026*
C240.2102 (4)0.4645 (3)0.5073 (3)0.0187 (6)
H240.2881630.5411370.5468440.022*
N1−0.0074 (3)0.3254 (3)0.8681 (2)0.0211 (6)
O10.0812 (3)0.1168 (2)0.91090 (19)0.0209 (5)
O20.0869 (3)0.3463 (2)0.80385 (18)0.0194 (5)
O30.3684 (4)−0.0581 (3)0.8221 (3)0.0394 (7)
Rh10.21129 (3)0.18715 (2)0.80716 (2)0.01565 (8)

Source of material

[Rh(hopo)(CO)2] (hopo=2-oxopyridineN-oxide) was synthesized according to the method described previously [5]. [Rh(opo)(CO)(AsPh3)] was synthesized by dissolving [Rh(hopo)(CO)2] (0.0210 g, 0.0780 mmol) in 5 cm3 of acetone. Triphenylarsine (0.0239 g, 0.0780 mmol) was added to the aforementioned solution with stirring. Some ice water was added dropwise to precipitate the product. Yellow plate crystals were obtained from recrystallization in acetone and a few drops of water.

IR: νCO 1954 cm−1. 1H NMR (400 MHz, CD2Cl2) δ 8.11 (d, J = 6.2 Hz, 1H), 7.77 (s, 1H), 7.67 (d, J = 6.7 Hz, 15H), 7.56 (d, J = 7.5 Hz, 1H), 7.52 – 7.43 (m, 15H), 7.18 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 8.9 Hz, 1H), 6.76 (d, J = 8.7 Hz, 1H), 6.60 (s, 1H), 6.49 (t, J = 6.3 Hz, 1H).

Experimental details

All H-atoms were positioned on geometrically idealized positions and refined using the riding model with fixed C–H distances for aromatic C–H of 0.93 Å (C–H) [Uiso (H)=1.2 Ueq]. The graphics were obtained using the DIAMOND [3] program with 50% probability ellipsoids.

Comment

The carbonylation of methanol using a rhodium complex as catalyst is an industrial relevant reaction to produce acetic acid. One of the carbonyl ligands in the precursor [Rh(BID)(CO)2] complexes (BID = different monocharged bidentate ligands such as cupferrate and 2-oxopyridine N-oxide, etc.) is substituted by tertiary phosphine ligands (PX3) to form [Rh(BID)(CO)(PX3)] complexes. These complexes have been studied intensively for a potential application in catalytic hydroformylation, hydrogenation, carbonylation, and decarbonylation [6], [7], [8], [9], [10], [11], [12], [13].

The coordination mode in the title complex is similar to the complexes reported previously [14], [15]. In this structure, the ligands are coordinated to rhodium in a distorted square planar geometry. This distortion of the O1-Rh-O2 bond angle from 90° is indicated by the small bite angle of 79.87(2)° of the five membered ring as well as the As1-Rh1-C6, As1-Rh1-O2 and C6-Rh1-O1, angles of 92.37(2), 91.89(2) and 95.89(3)°, respectively. The Rh1-O1, Rh1-O2, Rh1-As1 and Rh1-C6 bond distances are 2.0532(1), 2.0442(1), 2.3377(1) and 1.8010(1) Å, respectively. The lengthening of Rh-O1 compared to Rh-O2 is due to the strong trans influence of the As atom. Phenyl hydrogen atoms in the figure are omitted for clarity (see the figure).


Corresponding author: Mohammed A. Elmakki, Department of ChemistryUniversity of the Free State, Bloemfontein, 9301, South Africa, E-mail:

Funding source: University of the Free State

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to thank the University of the Free State for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

2. Bruker. SAINT–Plus (Version 7.12) and SADABS (Version 2004/1); Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Search in Google Scholar

3. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Version 3.0c; Crystal Impact: Bonn, Germany, 2005.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Elmakki, M. A., Koen, R., Venter, J. A., Drost, R. Crystal structure of dicarbonyl(pyridine-2-olate-1-oxido-k2O,O′)rhodium(I), C7H4NO4Rh. Z. Kristallogr. NCS 2016, 231, 703–705; https://doi.org/10.1515/ncrs-2015-0240.Search in Google Scholar

6. Venter, J. A., Leipoldt, J. G., Eldik, R. V. Solvent, temperature, and pressure dependence of oxidative addition of iodomethane to complexes of the type RhI(β-diketone)(CO)(PPh3). Inorg. Chem. 1991, 30, 2207–2209; https://doi.org/10.1021/ic00009a046.Search in Google Scholar

7. Hallinan, N., Hinnenkamp, J. Catalysis of organic reactions. J. Chem. Ind. 2001, 82, 545.Search in Google Scholar

8. Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. Mechanism for the oxidative addition of iodomethane to carbonyl(N-hydroxy-N-nitrosobenzenaminato-O,O′)- triarylphosphinerhodium(I) complexes and crystal structure of [Rh(cupf)(CO)(CH3)(I)(PPh3)]. Inorg. Chim. Acta 1987, 128, 31–37; https://doi.org/10.1016/s0020-1693(00)84691-5.Search in Google Scholar

9. Brink, A., Roodt, A., Steyl, G., Visser, H. G. Steric vs. electronic anomaly observed from iodomethane oxidative addition to tertiary phosphine modified rhodium(I) acetylacetonato complexes following progressive phenyl replacement by cyclohexyl [PR3= PPh3, PPh2, Cy, PPhCy2, PCy3]. Dalton Trans. 2010, 39, 5572–5578; https://doi.org/10.1039/b922083f.Search in Google Scholar

10. Roodt, A., Visser, H. G., Brink, A. Structure/reactivity relationships and mechanism from X-ray data and spectroscopic kinetic analysis. Crystallogr. Rev. 2011, 17, 241–280; https://doi.org/10.1080/0889311x.2011.593032.Search in Google Scholar

11. Roodt, A., Otto, S., Steyl, G. Structure & solution behaviour of rhodium(I) Vaska-type complexes for correlation of steric & electronic properties of tertiary phosphine ligands. Coord. Chem. Rev. 2003, 245, 121–137; https://doi.org/10.1016/s0010-8545(03)00069-9.Search in Google Scholar

12. Warsink, S., Kotze, P. D. R., Janse van Rensburg, J. M., Venter, J. A., Otto, S., Botha, E., Roodt, A. Kinetic-mechanistic and solid-state study of the oxidative addition and migratory insertion of iodomethane to [rhodium(S,O–BdiPT or N,O-ox)(CO)(PR1R2R3)] complexes. Eur. J. Inorg. Chem. 2018, 32, 3615–3625; https://doi.org/10.1002/ejic.201800293.Search in Google Scholar

13. Elmakki, M. A., Alexander, O. T., Roodt, A. The crystal structure of trans-carbonyl-(diphenylcyclohexyl-phosphine P)iodidomethyl-(2-oxopyridin-1(2H)-olato-k2O,O′)rhodium(III), C25H28INO3PRh. Z. Kristallogr. NCS 2020, 235, 279–281; https://doi.org/10.1515/ncrs-2019-0602.Search in Google Scholar

14. Elmakki, M. A., Alexander, O. T., Venter, G. J. S., Venter, J. A. Crystal structure of carbonyl(2-oxopyridin-1(2H-olato-k2O,Ok2) (diphenylcyclohexylphosphine-P)rhodium(I), C24H25NO3PRh. Z. Kristallogr. NCS 2017, 232, 831–833; https://doi.org/10.1515/ncrs-2017-0066.Search in Google Scholar

15. Elmakki, M. A., Koen, R., Drost, R. M., Alexander, O. T., Venter, G. J. S., Venter, J. A. Crystal structure of carbonyl(2-oxopyridin-1(2H-olato-k2O,O′) (triphenylphosphine-P)rhodium(I), C24H19NO3PRh. Z. Kristallogr. NCS 2016, 231, 781–783; https://doi.org/10.1515/ncrs-2015-0266.Search in Google Scholar

Received: 2020-09-23
Accepted: 2020-10-21
Published Online: 2020-12-10
Published in Print: 2021-01-26

© 2020 Mohammed A. Elmakki et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0490/html
Scroll to top button