Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) January 22, 2021

The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6

  • Liguo Yang ORCID logo EMAIL logo , Xin Wang , Dan Luo , Nana Liu and Dayong Tian

Abstract

C63H57Cl2N13Ni3O6, monoclinic, P21/c, a = 16.136(4) Å, b = 16.432(4) Å, c = 23.881(6) Å, β = 101.900(3)°, V = 6196(3) Å3, Z = 4, Rgt(F) = 0.0461, wRref(F2) = 0.1357, T = 298 K [1], [2], [3].

CCDC no.: 2054630

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Red block
Size:0.06 × 0.04 × 0.02 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.05 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:72,238, 10,897, 0.053
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 8298
N(param)refined:786
Programs:Bruker [1], SHELX [2], [, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Ni10.30718 (2)0.39503 (3)0.28225 (2)0.03055 (12)
Ni20.59164 (3)0.40468 (3)0.39023 (2)0.03796 (14)
Ni30.02977 (3)0.33339 (3)0.17469 (2)0.03905 (14)
O1−0.03985 (14)0.30837 (16)0.23295 (11)0.0453 (6)
O20.11658 (16)0.36264 (18)0.12628 (10)0.0520 (7)
O30.21115 (14)0.37930 (15)0.32435 (10)0.0393 (6)
O40.40322 (13)0.41154 (15)0.24046 (9)0.0360 (5)
O50.50154 (14)0.39447 (15)0.43821 (10)0.0406 (6)
O60.66494 (14)0.41634 (17)0.33259 (11)0.0466 (6)
N1−0.07082 (19)0.3139 (2)0.10421 (14)0.0486 (8)
N2−0.0134 (2)0.4601 (2)0.17227 (16)0.0583 (10)
N30.0633 (2)0.2044 (2)0.16906 (15)0.0516 (8)
N40.13045 (16)0.35747 (17)0.23514 (12)0.0334 (6)
N50.20385 (16)0.37956 (17)0.21484 (12)0.0344 (6)
N60.28788 (18)0.52543 (17)0.28177 (12)0.0387 (7)
N70.33262 (19)0.26500 (18)0.28403 (13)0.0413 (7)
N80.41164 (16)0.40238 (17)0.35037 (11)0.0326 (6)
N90.48748 (16)0.40517 (17)0.32985 (12)0.0338 (6)
N100.6033 (2)0.2706 (2)0.38994 (13)0.0510 (8)
N110.69262 (19)0.40791 (19)0.46179 (14)0.0462 (8)
N120.58868 (19)0.5387 (2)0.39976 (13)0.0458 (8)
N140.7383 (9)0.9771 (6)0.5261 (4)0.172 (4)
Cl10.57028 (8)0.38651 (9)0.08203 (5)0.0736 (4)
Cl20.04575 (9)0.34987 (11)0.48288 (5)0.0868 (4)
C10.7353 (4)0.4230 (4)0.5622 (2)0.0870 (17)
H10.72070.42260.59790.104*
C20.8150 (4)0.4379 (4)0.5575 (3)0.098 (2)
H20.85630.44960.58990.118*
C30.8353 (3)0.4355 (4)0.5046 (3)0.101 (2)
H30.89070.44430.50040.122*
C40.7715 (3)0.4198 (3)0.4575 (2)0.0710 (14)
H40.78500.41760.42150.085*
C50.6755 (3)0.4085 (3)0.51376 (18)0.0643 (12)
H50.62010.39860.51740.077*
C60.6535 (4)0.5834 (3)0.3923 (3)0.097 (2)
H60.69980.55670.38320.116*
C70.6572 (4)0.6663 (4)0.3971 (4)0.118 (3)
H70.70540.69440.39230.142*
C80.5890 (4)0.7075 (3)0.4090 (2)0.0741 (14)
H80.58780.76410.41030.089*
C90.5239 (3)0.6622 (3)0.4186 (2)0.0715 (14)
H90.47710.68730.42820.086*
C100.5265 (3)0.5789 (3)0.4141 (2)0.0612 (12)
H100.48090.54930.42170.073*
C110.6387 (2)0.4115 (2)0.27738 (15)0.0368 (8)
C120.7005 (2)0.4125 (2)0.24263 (17)0.0431 (9)
H120.75710.41810.26050.052*
C130.6807 (2)0.4056 (2)0.18399 (17)0.0459 (9)
H130.72320.40680.16290.055*
C140.5969 (2)0.3968 (2)0.15679 (15)0.0421 (9)
C150.5341 (2)0.3977 (2)0.18755 (15)0.0379 (8)
H150.47800.39290.16830.045*
C160.5519 (2)0.4055 (2)0.24723 (14)0.0326 (7)
C170.4765 (2)0.40798 (19)0.27399 (14)0.0316 (7)
C180.4272 (2)0.3947 (2)0.40645 (14)0.0341 (8)
C190.3542 (2)0.3838 (3)0.43533 (16)0.0482 (10)
H19A0.35510.32950.45040.072*
H19B0.30220.39240.40820.072*
H19C0.35850.42230.46600.072*
C200.5614 (3)0.2236 (3)0.4204 (2)0.0700 (13)
H200.52670.24900.44170.084*
C210.5665 (4)0.1400 (3)0.4222 (3)0.0897 (17)
H210.53670.11000.44460.108*
C220.6163 (5)0.1021 (4)0.3905 (3)0.099 (2)
H220.61990.04560.38990.119*
C230.6608 (5)0.1486 (4)0.3595 (2)0.102 (2)
H230.69620.12430.33820.122*
C240.6525 (4)0.2325 (3)0.3603 (2)0.0794 (16)
H240.68290.26360.33900.095*
C250.3531 (3)0.5769 (2)0.29261 (18)0.0513 (10)
H250.40760.55550.30020.062*
C260.3437 (3)0.6602 (3)0.2931 (2)0.0628 (12)
H260.39080.69400.30130.075*
C270.2636 (3)0.6920 (3)0.2812 (2)0.0688 (13)
H270.25540.74800.28040.083*
C280.1960 (3)0.6401 (3)0.2704 (2)0.0679 (13)
H280.14100.66020.26290.081*
C290.2107 (2)0.5574 (2)0.27089 (18)0.0508 (10)
H290.16440.52250.26320.061*
C300.3130 (3)0.2185 (3)0.3245 (2)0.0643 (12)
H300.27840.23970.34760.077*
C310.3417 (4)0.1395 (3)0.3338 (2)0.0885 (18)
H310.32750.10850.36300.106*
C320.3913 (4)0.1077 (3)0.2993 (3)0.0870 (17)
H320.40990.05400.30380.104*
C330.4126 (4)0.1549 (3)0.2590 (3)0.096 (2)
H330.44800.13530.23590.115*
C340.3816 (3)0.2328 (3)0.2523 (3)0.0768 (15)
H340.39610.26470.22360.092*
C350.0100 (4)0.1449 (3)0.1628 (4)0.128 (3)
H35−0.04640.15730.16230.154*
C360.0304 (5)0.0634 (4)0.1565 (4)0.148 (4)
H36−0.01190.02400.15060.177*
C370.1084 (6)0.0431 (4)0.1591 (3)0.125 (3)
H370.1223−0.00890.14870.150*
C380.1715 (5)0.1009 (4)0.1779 (4)0.117 (2)
H380.22840.08680.18900.140*
C390.1437 (4)0.1809 (4)0.1789 (4)0.123 (3)
H390.18490.22130.18710.148*
C40−0.1490 (2)0.2981 (3)0.1111 (2)0.0599 (11)
H40−0.15840.29330.14810.072*
C41−0.2159 (3)0.2888 (3)0.0663 (3)0.0801 (16)
H41−0.26970.27760.07280.096*
C42−0.2033 (4)0.2960 (4)0.0122 (3)0.0891 (19)
H42−0.24810.2903−0.01900.107*
C43−0.1228 (4)0.3118 (4)0.0043 (2)0.099 (2)
H43−0.11200.3165−0.03230.118*
C44−0.0589 (3)0.3205 (3)0.0515 (2)0.0742 (14)
H44−0.00460.33150.04610.089*
C450.0266 (4)0.5210 (3)0.1542 (3)0.108 (2)
H450.07550.51040.14060.129*
C46−0.0022 (6)0.6024 (4)0.1548 (4)0.148 (4)
H460.02860.64450.14290.178*
C47−0.0733 (7)0.6182 (5)0.1723 (4)0.151 (5)
H47−0.09310.67130.17210.181*
C48−0.1167 (6)0.5569 (4)0.1905 (3)0.117 (3)
H48−0.16720.56650.20250.141*
C49−0.0836 (4)0.4796 (3)0.1906 (2)0.0814 (16)
H49−0.11240.43770.20460.098*
C500.0205 (3)0.3395 (3)0.40822 (17)0.0511 (10)
C51−0.0608 (3)0.3196 (2)0.38023 (19)0.0528 (10)
H51−0.10330.31190.40080.063*
C52−0.0779 (2)0.3113 (2)0.32200 (18)0.0460 (9)
H52−0.13310.29850.30380.055*
C53−0.0167 (2)0.3211 (2)0.28761 (16)0.0375 (8)
C540.0666 (2)0.3437 (2)0.31787 (15)0.0347 (8)
C550.0827 (2)0.3518 (2)0.37748 (16)0.0419 (9)
H550.13690.36580.39680.050*
C560.1409 (2)0.3606 (2)0.29093 (15)0.0324 (7)
C570.1883 (2)0.3806 (2)0.15869 (15)0.0406 (8)
C580.2588 (2)0.4047 (3)0.13024 (17)0.0580 (12)
H58A0.26930.36170.10550.087*
H58B0.30900.41480.15880.087*
H58C0.24320.45320.10820.087*
C590.6863 (8)0.8488 (6)0.5177 (4)0.142 (4)
H590.63930.81480.51380.171*
C600.6740 (8)0.9273 (7)0.5182 (4)0.151 (4)
H600.61920.94780.51290.182*
C610.7589 (9)0.8161 (6)0.5223 (4)0.136 (3)
H610.76400.75970.52200.163*
C620.8171 (9)0.9487 (8)0.5301 (4)0.151 (4)
H620.86360.98320.53430.181*
C630.8258 (8)0.8616 (7)0.5275 (3)0.148 (4)
H630.87880.83820.52950.178*

Source of material

The educt N′-acetyl-5-chloro-2-hydroxybenzohydrazide (LH3), intended to be the bridging ligand in its deprotonated form was synthesized according to reference [4]. A mixture of LH3 (0.196 g, 1 mmol) and nickel acetate (0.162 g, 1 mmol) and a few drops of a NaOH solution in 10 ml methanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurties, and then left at room temperature. After a few days, red blocks of the ligand were formed. Yield (0.23 g, 60%).

Experimental details

H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5 Ueq(C) [3].

Comment

Pentadentate ligands have been synthesized in recent years [5]. Pentadentate ligands can react with the transition metals and rare earth metals [6], [, 7]. A lot of the ring structure containing complexes and metallacrown complexes have been synthesized. In recent years, our group synthesized several pentadentate ligands, the ligand L/LH3 is one of them. The new ligand reacts with the transition metals [8].

As shown in the Figure, the title compound crystallizes in the monoclinic space group P21/c with four formula units in the unit cell. The bond lengths of Ni–O are 2.030, 2.000, 2.035, 2.003 and 2.049 Å, the bond lengths of Ni–N are 2.081, 2.091, 2.165, 2.174, 1.976, 2.105, 2.211, 2.215, 1.978, 2.108, 2.193 and 2.198 Å, respectively, the bond lengths of Ni–N from the pyridine molecule is longer than the bond lengths of Ni–N from the anionic ligands, which are similar with the reference [8]. The trinuclear complex is almost centrosymmetric but this symmetry is not supported by the crystallographic findings. The Ni complex is formed by two chelated ligands three nickel ions and eight pyridine molecules. We can see that each nickel ion resides in a slightly distorted octahedral coordination environment, consisting of three pyridine N, a phenolate O, a carbonyl oxido O and an imine-type nitrogen of L, which construct the five-membered and six-membered rings with each nickel atom.


Corresponding author: Yang Liguo, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, P. R. China, E-mail:

Funding source: Natural Science Foundation of Henan Province of China

Award Identifier / Grant number: 202300410010

Funding source: Anyang Institute of Technoloty

Award Identifier / Grant number: YPY2019011

Award Identifier / Grant number: YPY2020025

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Natural Science Foundation of Henan Province of China (Nos. 202300410010), Research Fund of Anyang Institute of Technology (Nos. YPY2019011, YPY2020025), Key discipline of environmental engineer of Anyang Institute of Technology.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Smart and Saint for Windows NT Software Reference Manuals, (version 5.0); Bruker Analytical X-Ray Systems: Madison, WI, 1997.Search in Google Scholar

2. Sheldrick, G. M. Sadabs, A Software for Empirical Absorption Correction; University of Göttingen: Göttingen, Germany, 1997.Search in Google Scholar

3. Shelxl Reference Manual, (version 5.1). Bruker Analytical X-Ray Systems: Madison, WI, 1997.Search in Google Scholar

4. Yang, M. X., Lin, S., Chen, L. J., Liu, S. X. Synthesis and crystal structure of the trinuclear nickel(II) complex with Schiff base ligand N-butylsalicylhydrazide. Chin. J. Inorg. Chem. 2003, 19, 434–436.Search in Google Scholar

5. Lin, S., Liu, S. X., Lin, B. Z. Syntheses, crystal structures and magnetic property of the two Mn(II) 18-aza metallacrown-6 complexes. Chin. J. Inorg. Chem. 2002, 18, 1206–1210.Search in Google Scholar

6. Lin, S., Liu, S. X., Lin, B. Z. Synthesis, crystal structure and magnetic properties of a novel iron(III) 18-azametallacrown-6 compound. Inorg. Chim. Acta 2002, 328, 69–73; https://doi.org/10.1016/S0020-1693(01)00664-8.Search in Google Scholar

7. Lin, S., Liu, S. X., Chen, Z., Lin, B. Z., Gao, S. Synthesis, structure, and magnetism of a ferric 24-azametallacrown-8 complex. Inorg. Chem. 2004, 43, 2222–2224; https://doi.org/10.1021/ic035145w.Search in Google Scholar

8. Chen, X. H., Liu, S. X. Syntheses and crystal structures of two nickel complexes with N-substituted-salicyl ligand. Chin. J. Inorg. Chem. 2005, 21, 15–20.Search in Google Scholar

Received: 2020-11-06
Accepted: 2021-01-08
Published Online: 2021-01-22
Published in Print: 2021-05-26

© 2020 Liguo Yang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0600/html
Scroll to top button