Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) July 28, 2021

Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd

  • Wei-Dong Yin , Qian-Long Liu , Ya-Jing Zhao , Xiao-Ru Gong and Gui-Lian Li EMAIL logo

Abstract

C30H25N11O8Cd, orthorhombic, Pnma (no. 62), a = 17.9344(3) Å, b = 18.2722(3) Å, c = 9.5619(2) Å, V = 3133.44(10) Å3, Z = 4, R gt (F) = 0.0345, wR ref (F 2) = 0.0707, T = 293.28(10) K.

CCDC no.: 2082668

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.39 × 0.35 × 0.29 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.77 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 28.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 35240, 3786, 0.038
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3390
N(param)refined: 266
Programs: Bruker [1], Olex2 [2], SHELX [3], [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Cd1 0.77972 (2) 0.2500 0.66270 (2) 0.03121 (8)
O1 0.65926 (11) 0.19115 (13) 0.5787 (2) 0.0705 (6)
O2 0.53199 (14) 0.2500 0.7699 (3) 0.0689 (10)
O3 0.41098 (12) 0.2500 0.7344 (2) 0.0446 (6)
O4a 0.617 (2) 0.2500 0.1207 (9) 0.063 (6)
O4Ab 0.6354 (13) 0.2370 (12) 0.1218 (8) 0.049 (4)
O5a 0.6902 (5) 0.2500 0.3096 (12) 0.063 (8)
O5Ab 0.6798 (11) 0.2888 (15) 0.3005 (12) 0.062 (4)
N1 0.75623 (11) 0.33807 (11) 0.8313 (2) 0.0376 (5)
N2 0.68961 (10) 0.40227 (10) 0.98075 (19) 0.0321 (4)
N3 0.42468 (9) 0.40188 (10) 1.07742 (19) 0.0308 (4)
N4 0.33385 (10) 0.33930 (11) 0.9786 (2) 0.0365 (4)
N5 0.58255 (12) 0.47644 (15) 1.2737 (3) 0.0609 (7)
N6 0.6294 (2) 0.2500 0.2458 (3) 0.0487 (8)
C1 0.62986 (18) 0.2500 0.5504 (3) 0.0392 (8)
C2 0.55712 (16) 0.2500 0.4701 (3) 0.0272 (6)
C3 0.48730 (16) 0.2500 0.5341 (3) 0.0273 (6)
C4 0.42285 (19) 0.2500 0.4531 (4) 0.0370 (7)
H4 0.3766 0.2500 0.4970 0.044*
C5 0.4263 (2) 0.2500 0.3078 (4) 0.0446 (9)
H5 0.3828 0.2500 0.2550 0.054*
C6 0.4940 (2) 0.2500 0.2436 (3) 0.0407 (8)
H6 0.4971 0.2500 0.1465 0.049*
C7 0.55819 (19) 0.2500 0.3238 (3) 0.0330 (7)
C8 0.47659 (17) 0.2500 0.6933 (3) 0.0321 (7)
C9 0.80166 (12) 0.38767 (14) 0.8971 (3) 0.0390 (6)
H9 0.8525 0.3930 0.8805 0.047*
C10 0.68976 (13) 0.34834 (14) 0.8837 (2) 0.0366 (5)
H10 0.6477 0.3219 0.8575 0.044*
C11 0.76203 (12) 0.42761 (14) 0.9893 (3) 0.0406 (6)
H11 0.7798 0.4647 1.0469 0.049*
C12 0.62803 (11) 0.42313 (12) 1.0641 (2) 0.0304 (5)
C13 0.55656 (11) 0.40576 (12) 1.0234 (2) 0.0314 (5)
H13 0.5477 0.3831 0.9378 0.038*
C14 0.49865 (11) 0.42256 (12) 1.1117 (2) 0.0298 (5)
C15 0.51346 (14) 0.45809 (15) 1.2361 (3) 0.0486 (7)
H15 0.4741 0.4696 1.2954 0.058*
C16 0.63851 (13) 0.45907 (16) 1.1889 (3) 0.0483 (7)
H16 0.6868 0.4717 1.2150 0.058*
C17 0.40561 (12) 0.35089 (13) 0.9806 (2) 0.0336 (5)
H17 0.4396 0.3271 0.9228 0.040*
C18 0.30452 (13) 0.38498 (15) 1.0785 (3) 0.0449 (6)
H18 0.2541 0.3888 1.0999 0.054*
C19 0.35921 (13) 0.42348 (15) 1.1409 (3) 0.0430 (6)
H19 0.3539 0.4577 1.2123 0.052*
O1W 0.61506 (12) 0.04498 (13) 0.5852 (2) 0.0720 (6)
H1WA 0.6273 0.0899 0.5972 0.108*
H1WB 0.6014 0.0360 0.5018 0.108*
  1. aOccupancy: 0.44(6), bOccupancy: 0.28(3).

Source of material

All chemical reagents were used without further purification. The 3-nitrobenzene-1,2-dicarboxylic acid were purchased from Beijing Bailingwei Technology Co., Ltd. 3,5–Bis(1-imidazolyl)pyridine was bought from Jinan Henghua Technology Co., Ltd. All other chemical reagents were of analytical grade and obtained from the Tianjin Deen Chemical Reagent Co., Ltd. The mixture of 3-nitrobenzene-1,2-dicarboxylic acid (H23–Nbdc 21.4 mg, 0.1 mmol), 3,5-bis(1-imidazolyl)pyridine (bip, 21.1 mg, 0.1 mmol), Cd(OAc)2·2H2O (26.7 mg, 0.1 mmol), NaOH (4 mg, 0.10 mmol) and H2O (6 mL) was placed in a 23 ml Teflon-lined autoclave at 393 K for four days, then cooled to room temperature. Colorless block crystals were obtained in ca. 62% yield. Elemental analysis calcd. (%) for C30H25N11O8Cd: C, 46.20; H, 3.23; N, 19.75 Found: C, 46.24; H, 3.28; N, 19.68.

Experimental details

Using Olex2 [2]. The structure was solved with the SheLXT [3] structure solution program using Intrinsic Phasing and refined with the ShelXL [4] refinement package. Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms. The U iso of the H-atoms were constrained to 1.2 times U eq of their bonding carbon atoms with C–H = 0.93 Å (aromatic) and 1.5 times U eq for the hydrogen atoms at water with O–H = 0.85 Å. The O4 and O5 atoms were disordered and the components of disordered atoms were refined isotropically.

Comment

Metal-organic Complexes have always been in the spotlight for a long time not only for their diversities of structures [5], [6], [7], [8], but also for their strong thermal and chemical stabilities [9], [10], [11], [12]. At the same time, they have attractive application prospects in many fields such as gas storage/separations, fluorescent sensing, nonlinear optics, magnetic, catalysis, and so on [13], [14], [15], [16]. Carboxylate ligands with the electron-withdrawing group (–NO2) are widely used as an oxygen-donor ligand because the N and O atoms in the –NO2 group can not only serve as coordination sites but also as acceptors for hydrogen-bonds to enrich the structural and functional diversities of coordination polymers [16]. In our previous work, we had synthesized a series of metal-organic compounds with diverse structures and excellent properties such as magnetism, fluorescent, photochemical and photocatalytic properties based on 3-nitrophthalic acid [17], [18], [19] and 4-nitrophthalic acid [16, 2022]. Among the N-donor ligands, the imidazolyl ligands are the most common N-donor ligands to combine with O-donor ligands to adjust the structures and properties of metal-organic complexes [23]. The 3,5-bis(1-imidazolyl)pyridine (bip) is one of many imidazolyl N-donor ligands which were used to synthesize metal-organic complexes [24], [25], [26], [27]. In this study, we selected the 3-nitrobenzene-1,2-dicarboxylic acid (H23–Nbdc) as an educt, 3,5-bis(1-imidazolyl)pyridine (bip) as a N-donor ligand, cadmium acetate as Cd-metal supplier to obtain the coordination polymer.

The single-crystal X-ray analysis shows that the title complex crystallizes in orthorhombic crystal system and features a one-dimensional chain. The asymmetric unit contains a half Cd(II) ion, a half 3–Nbdc dianion, one bip molecule, and one guest water molecule, as shown in the figure (A: x, 0.5 − y, z; B: 0.5 + x, y, 1.5 − z; C: 0.5 + x, 0.5 − y, 1.5 − z). The Cd(II) ion is seven coordinated by three oxygen atoms and four nitrogen atoms. Among them, three oxygen atoms are from two symmetry-related 3–Nbdc dianions, and the other four nitrogen atoms are from three symmetry-related bip ligands. The seven-coordinated Cd(II) ion forms a slightly distorted single cap octahedral [CoN4O3] geometry with the four atoms (N1, N1A, N4B, N4C) in the equatorial plane and the other three atoms (O1, O1A, O3B) in the axial position (see the Figure). The Cd–O bond lengths are 2.551(2) and 2.543(2) Å, whilst the Cd–N bond lengths are 2.317(2) and 2.3304(19) Å, respectively. The bond angles around the Cd centers range from 50.02(10) to 164.94(7)°.

The two carboxyl groups of one 3–Nbdc anion adopt chelating-bidentate and monodentate coordination modes, respectively. Every two cadmium atoms are linked together through one 3–Nbdc dianion and two bip molecules by an external single bridging coordination mode to form a chain with the Cd⃛Cd distance of 9.1213(1) Å. Adjacent chains are linked through hydrogen bonds between free water oxygen atom and nitrogen atom from bip molecules (O(1W)–H(1WB)⃛N5: d = 2.22 Å) along the c direction to generate a two-dimensional layer with the nearest Cd⃛Cd separation of 9.5619(2) Å. The adjacent layers stack together in a –ABAB-sequence to achieve a whole three-dimensional supramolecular structure via very weak interlayer π-π interactions between pyridine ring and imidazole ring of bip ligands. The centroid-centroid distance and the dihedral angle between pyridine ring and imidazole ring are 3.9677(0) Å and 15.9°, respectively.


Corresponding author: Gui-Lian Li, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, 471934, P. R. China, E-mail:

Funding source: National Natural Science Foundation of China 10.13039/501100001809

Award Identifier / Grant number: 21571093

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (No. 21571093).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Inc., CrysAlisPRO Tokyo, Japan (2015).Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Yue, Y. F., Qian, G. D., Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162; https://doi.org/10.1021/cr200101d.Search in Google Scholar

6. Xuan, W. M., Zhu, C. F., Liu, Y., Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev. 2012, 41, 1677–1695; https://doi.org/10.1039/c1cs15196g.Search in Google Scholar

7. Pan, J., Zhang, D., Xue, Z. Z., Wei, L., Han, S. D., Wang, G. M. Three d10 coordination polymers assembled from 3,5-bis(imidazole-1-yl)pyridine and different polycarboxylates: syntheses, structures and luminescence properties. Solid State Sci. 2017, 73, 13–18; https://doi.org/10.1016/j.solidstatesciences.2017.09.003.Search in Google Scholar

8. Wang, Y. F., Zhang, Y. H. A new 3D Cd(II) coordination polymer constructed by mixed-ligand strategy: synthesis, crystal structure and properties. Inorg. Nano–Mat. Chem. 2021, 51, 303–308; https://doi.org/10.1080/24701556.2020.1786119.Search in Google Scholar

9. Chang, X. H., Zhao, Y., Feng, X., Ma, L. F., Wang, L. Y. Syntheses, structures and fluorescent properties of cadmium coordination polymers based on 2,3′,5,5′-biphenyl tetracarboxylate and N-donor ancillary ligands. Polyhedron 2014, 83, 159–166; https://doi.org/10.1016/j.poly.2014.05.063.Search in Google Scholar

10. Ju, F. Y., Li, Y. P., Li, G. L., Liu, G. Z., Xin, L. Y., Li, X. L. Zinc(II) and cadmium(II) coordination polymers with various polynuclears spaced by semirigid 4-carboxybenzeneacetate and nitrogen-rich co-ligands: syntheses, structures and properties. Chin. J. Inorg. Chem. 2016, 32, 1876–1884.Search in Google Scholar

11. Yin, W. D., Li, G. L., Li, X. L., Xin, L. Y., Ma, L. F., Liu, G. Z. Syntheses, structures and fluorescent properties of two zinc coordination polymers based on the itaconic acid. Chin. J. Inorg. Chem. 2016, 32, 662–668.Search in Google Scholar

12. Yin, W. D., Li, G. L., Xin, L. Y., Li, X. L., Ma, L. F., Liu, G. Z. Solvothermal syntheses, crystal structures, and luminescent properties of three coordination polymers derived from semirigid 3-(carboxymethyl) benzonic acid and dipyridyl coligands. Chin. J. Struct. Chem. 2017, 36, 1502–1510.Search in Google Scholar

13. Zhao, Y., Wang, L., Fan, N. N., Han, M. L., Yang, G. P., Ma, L. F. Porous Zn(II)-based metal-organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst. Growth Des. 2018, 47, 7114–7121; https://doi.org/10.1021/acs.cgd.8b01290.Search in Google Scholar

14. Liu, G. Z., Li, S. H., Li, X. L., Xin, L. Y., Wang, L. Y. Three series of MOFs featuring various metal(II)-carboxylate chains cross-linked by dipyridyl-typed coligands: synthesis, structure, and solvent-dependent luminescence. CrystEngComm 2013, 15, 4571–4580; https://doi.org/10.1039/c3ce40109j.Search in Google Scholar

15. Xue, L. P., Li, Z. H., Zhang, T., Cui, J. J., Gao, Y., Yao, J. X. Construction of two Zn(II)/Cd(II) multifunctional coordination polymers with mixed ligands for catalytic and sensing properties. New J. Chem. 2018, 42, 14203–14209; https://doi.org/10.1039/c8nj02055h.Search in Google Scholar

16. Li, G. L., Yin, W. D., Liu, G. Z., Ma, L. F., Wang, L. Y. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands. J. Solid State Chem. 2014, 220, 1–8; https://doi.org/10.1016/j.jssc.2014.08.007.Search in Google Scholar

17. Li, G. L., Liu, G. Z., Xin, L. Y., Li, X. L., Ma, L. F., Wang, L. Y. Syntheses, structures and fluorescence properties of four Zn/Cd(II) coordiation polymers with 3-nitrobenzene-1,2-dicarboxylate and dipyridyl-typed coligands. J. Inorg. Organomet. Polym. 2015, 25, 694–701; https://doi.org/10.1007/s10904-014-0147-4.Search in Google Scholar

18. Yin, W. D., Li, G. L., Liu, G. Z., Xin, L. Y., Li, X. L., Ma, L. F. Syntheses, structures and properties of two coordination polymers constructed by 3-nitrobenzene-1,2-dicarboxylate acid and Zn/Co. Chin. J. Inorg. Chem. 2015, 31, 1439–1446.Search in Google Scholar

19. Yin, W. D., Liu, Q. L., Li, G. L. Crystal structure of catena-poly[triaqua-(1,3-di(1H-imidazol-1- yl)benzene-κ2N:N′)- (3-nitrophthalato-κ1O)cobalt(II)]-water (2/3), C20H22N5O10.5Co. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 125–128.10.1515/ncrs-2019-0531Search in Google Scholar

20. Li, G. L., Liu, G. Z., Huang, L. L., Li, L., Zhang, X. Ancillary ligand-mediated syntheses, structures and fluorescence of three Zn/Cd(II) coordination polymers based on nitrobenzene dicarboxylate. J. Inorg. Organomet. Polym. 2014, 24, 617–623; https://doi.org/10.1007/s10904-014-0024-1.Search in Google Scholar

21. Li, G. L., Liu, G. Z., Ma, L. F., Xin, L. Y., Li, X. L., Wang, L. Y. Crystallographic determination of solid-state structural transformations in a dynamic metal-organic framework. Chem. Commun. 2014, 50, 2615–2617; https://doi.org/10.1039/c3cc49106d.Search in Google Scholar

22. Li, G. L., Liu, G. Z., Xin, L. Y., Li, X. L. Two new coordination polymers containing metal-carboxylate helix. Chin. J. Struct. Chem. 2014, 33, 764–770.Search in Google Scholar

23. Xin, L. Y., Liu, G. Z., Ma, L. F., Zhang, X., Wang, L. Y. Structural diversity and fluorescence regulation of three ZnII coordination polymers assembled from mixed ligands tectons. Aust. J. Chem. 2015, 68, 758–765; https://doi.org/10.1071/ch14347.Search in Google Scholar

24. Zhao, C. J., Zhao, L., Zhang, M. Syntheses, characterizations and luminescence properties of four novel coordination polymers based on 4,4′-(phenylazanediyl)dibenzoic acid with two rigid N-donor imidazol ligand. Inorg. Chim. Acta 2018, 469, 136–143; https://doi.org/10.1016/j.ica.2017.09.019.Search in Google Scholar

25. Zhang, H., Zhu, Z. Q., Zhou, F. H., Redshaw, C., Chen, K., Xu, J. Two dimensional coordination polymers based on 3,5-di(1H-imidazol-1-yl) pyridine and their fluorescence properties. J. Mol. Struct. 2020, 1207, 127818; https://doi.org/10.1016/j.molstruc.2020.127818.Search in Google Scholar

26. Yuan, F., Yuan, C. M., Zhou, C. S., Qiao, C. F., Lu, L., Ma, A. Q., Singh, A., Kumar, A. Syntheses and photocatalytic properties of three new d10-based coordination polymers: effects of metal centres and ancillary ligands. CrystEngComm 2019, 21, 6558–6565; https://doi.org/10.1039/c9ce01325c.Search in Google Scholar

27. Wei-Wei, L., Feng-Yang, J. Crystal structure of catena-poly[aqua-(µ2 -(3,5-di(1H-imidazol-1-yl)-pyridine-κ2N:N′)-(µ2-2-(carboxylatomethyl)benzoato-κ2O:O′)] cadmium(II), C20H17CdN5O5. Z. Kristallogr. N. Cryst. Struct. 2018, 233, 545–546. https://doi.org/10.1515/ncrs-2017-0274.Search in Google Scholar

Received: 2021-04-08
Accepted: 2021-05-10
Published Online: 2021-07-28
Published in Print: 2021-09-27

© 2021 Wei-Dong Yin et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2021-0133/html
Scroll to top button