Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) September 6, 2021

The crystal structure of (1R *,2S *)-1,2-bis(2-fluorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol, C26H20F2O4

  • Hiroaki Iitsuka , Kun Li , Miyuki Kobayashi , Kikuko Iida , Keiichi Noguchi , Noriyuki Yonezawa and Akiko Okamoto ORCID logo EMAIL logo

Abstract

C26H20F2O4, monoclinic, P21/n (no. 14), a = 10.3707(2) Å, b = 12.0232(2) Å, c = 15.7744(3) Å, β = 90.907(1)°, V = 1966.65(6) Å3, Z = 4, R gt (F) = 0.0371, wR ref (F 2) = 0.1013, T = 193.15 K.

CCDC no.: 2103419

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.35 × 0.20 × 0.10 mm
Wavelength: Cu Kα radiation (1.54187 Å)
μ: 0.93 mm−1
Diffractometer, scan mode: Rigaku R-AXIS RAPID, ω
θ max, completeness: 68.2°, 99%
N(hkl)measured, N(hkl)unique, R int: 36,085, 3566, 0.022
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3380
N(param)refined: 306
Programs: Rigaku [1, 2], SHELX [3, 4], ORTEP-III [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.98369 (13) 0.31411 (11) 0.17894 (8) 0.0258 (3)
C2 1.07530 (13) 0.39373 (12) 0.19528 (9) 0.0291 (3)
C3 1.20809 (14) 0.36570 (12) 0.18799 (9) 0.0325 (3)
H3 1.2716 0.4212 0.1985 0.039*
C4 1.24645 (13) 0.26042 (13) 0.16621 (9) 0.0322 (3)
H4 1.3357 0.2446 0.1607 0.039*
C5 1.17750 (13) 0.06201 (12) 0.13210 (9) 0.0327 (3)
H5 1.2636 0.0361 0.1276 0.039*
C6 1.07676 (14) −0.01071 (12) 0.11942 (9) 0.0320 (3)
H6 1.0950 −0.0861 0.1063 0.038*
C7 0.94611 (13) 0.02378 (11) 0.12541 (9) 0.0277 (3)
C8 0.92073 (12) 0.13242 (11) 0.14637 (8) 0.0254 (3)
C9 1.02378 (13) 0.20590 (11) 0.15880 (8) 0.0257 (3)
C10 1.15442 (13) 0.17505 (12) 0.15186 (9) 0.0286 (3)
C11 0.83781 (13) 0.31780 (11) 0.18745 (8) 0.0262 (3)
C12 0.76872 (13) 0.40893 (11) 0.13776 (9) 0.0293 (3)
C13a 0.63866 (14) 0.43100 (13) 0.14949 (10) 0.0368 (3)
H13 0.5923 0.3858 0.1879 0.044*
C14 0.57381 (18) 0.51553 (15) 0.10789 (13) 0.0512 (5)
H14 0.4852 0.5288 0.1183 0.061*
C15 0.6396 (2) 0.58053 (15) 0.05091 (13) 0.0562 (5)
H15 0.5963 0.6391 0.0218 0.067*
C16 0.76816 (19) 0.56041 (14) 0.03620 (11) 0.0473 (4)
H16 0.8133 0.6047 −0.0034 0.057*
C17b 0.83134 (16) 0.47555 (12) 0.07931 (10) 0.0355 (3)
H17 0.9200 0.4625 0.0686 0.043*
C18 0.79264 (12) 0.19123 (11) 0.16029 (8) 0.0256 (3)
C19 0.70565 (12) 0.18631 (11) 0.08137 (9) 0.0254 (3)
C20 0.58102 (13) 0.14344 (12) 0.08438 (10) 0.0318 (3)
H20 0.5483 0.1188 0.1371 0.038*
C21 0.50367 (15) 0.13599 (13) 0.01195 (11) 0.0380 (4)
H21 0.4187 0.1070 0.0158 0.046*
C22 0.54886 (15) 0.17018 (13) −0.06560 (10) 0.0392 (4)
H22 0.4957 0.1643 −0.1150 0.047*
C23 0.67255 (15) 0.21313 (12) −0.07087 (9) 0.0343 (3)
H23 0.7052 0.2375 −0.1236 0.041*
C24 0.74705 (13) 0.21969 (11) 0.00204 (9) 0.0277 (3)
C25 1.09837 (18) 0.58978 (13) 0.18453 (12) 0.0463 (4)
H25A 1.0631 0.6587 0.2079 0.056*
H25B 1.1911 0.5862 0.1970 0.056*
H25C 1.0839 0.5885 0.1230 0.056*
C26 0.86957 (15) −0.15402 (12) 0.07840 (10) 0.0342 (3)
H26A 0.7886 −0.1954 0.0721 0.041*
H26B 0.9098 −0.1464 0.0229 0.041*
H26C 0.9280 −0.1942 0.1170 0.041*
F1Ab 0.57062 (9) 0.36665 (9) 0.20276 (7) 0.0457 (3)
F1Ba 0.9303 (15) 0.4543 (14) 0.0459 (9) 0.043 (4)
F2 0.86876 (8) 0.26034 (7) −0.00543 (5) 0.0346 (2)
O1 0.81215 (10) 0.32802 (10) 0.27618 (6) 0.0338 (2)
H1 0.783 (2) 0.3883 (19) 0.2849 (14) 0.060 (7)*
O2 0.72549 (10) 0.14048 (9) 0.22742 (7) 0.0334 (2)
H2 0.746 (2) 0.1767 (19) 0.2702 (15) 0.060 (7)*
O3 1.03595 (10) 0.49682 (8) 0.22181 (7) 0.0367 (3)
O4 0.84373 (9) −0.04593 (8) 0.11230 (7) 0.0321 (2)
  1. aOccupancy: 0.06, bOccupancy: 0.94.

Source of material

The title compound was prepared via Zn-mediated reductive coupling reaction [6] of 1,8-bis(2-fluorobenzoyl)-2,7-dimeth-oxynaphthalene. The starting material was synthesized by reference to the literature [7]. In a 10 mL two-necked round-bottomed flask, 1,8-bis(2-fluorobenzoyl)-2,7-dimeth-oxynaphthalene (86 mg, 0.2 mmol), zinc (78 mg, 1.2 mmol), zinc chloride (27 mg, 0.2 mmol) and DMAc (0.4 mL) were stirred at 373 K under nitrogen atmosphere. After stirring for 4 h, the reaction mixture was poured into water (30 mL). The resulting aqueous solution was extracted with chloroform (20 mL × three times). The combined organic extracts were washed with 2 M HCl aq (20 mL × three times) and brine (20 mL × three times) successively. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. Then the cake was dissolved in chloroform (2 mL) and the solution was added drop-wisely to hexane (200 mL) for reprecipitation. The precipitates were collected by suction filtration (quant.). Colorless block crystals of title compound were obtained by crystallization from ethyl acetate (68% yield). 1 H NMR δ (300 MHz, CDCl3): 8.09 (1H, dddd, J = 8.1, 8.1, 2.4 and 2.4 Hz), 7.88 (d, 1H, J = 9.0 Hz), 7.77 (d, 1H, J = 8.7 Hz), 7.29 (d, 1H, J = 9.0 Hz), 7.14 (d, 1H, J = 8.7 Hz), 7.05 (ddd, 1H, J = 7.8, 7.8 and 1.5 Hz), 7.02–6.88 (m, 3H), 6.76 (ddd, 1H, J = 7.8, 7.8 and 1.5 Hz), 6.59 (ddd, 1H, J = 1, 12.0 and 0.9 Hz), 6.25 (ddd, 1H, J = 11.4, 7.8 and 0.9 Hz), 4.48 (s, 1H), 4.31 (d, 1H, J = 6.6 Hz), 3.90 (s, 3H), 3.66 (s, 3H) ppm; 13 C NMR δ (75 MHz, CDCl3): 160.79 (J CF  = 247 Hz), 158.67 (J CF  = 246 Hz), 153.53, 153.09, 139.44 (pseudo s, J C–F = 2.9 Hz), 130.73 (J CF  = 10.1 Hz), 130.66, 129.43 (J CF  = 8.6 Hz), 128.73 (J CF  = 7.9 Hz), 128.34, 128.02, 127.94 (J C F  = 12.2 Hz), 127.32 (J CF  = 7.2 Hz), 127.16, 123.76, 123.00 (J CF  = 2.8 Hz), 122.53 (J CF  = 2.8 Hz), 122.17, 115.17 (J CF  = 23.0 Hz), 114.43, 114.10 (J CF  = 23.0 Hz), 113.61, 89.95 (pseudo s), 85.66 (J CF  = 2.85 Hz), 56.56, 56.16 ppm. IR (KBr): 3505 (O–H), 3464 (O–H), 1630 (Ar), 1581 (Ar), 1504 (Ar), 1485, 1225, 1040 cm−1. HRMS (m/z): [M+H–H2O]+ calcd. for C26H19F2O3, 417.1302, found, 417.1318. m.p. = 450–451 K.

Experimental details

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 (aromatic) and 0.98 (methyl) Å, and with U iso(H) = 1.2U eq(C).

Comment

Weak interactions such as non-classical hydrogen bond [8], [9], [10], [11] are ordinarily latent, however, crystals of non-coplanarly accumulated aromatic rings compounds can expectingly pull out weak interactions by depressing ππ stacking. Such a skeleton is embodied in title pinacol, which is reductively coupling product of peri-aroylnaphthalene compounds [12], [13], [14], [15], [16], [17]. In the title molecular structure, two 2-fluorophenyl groups are oriented in a same direction against the acenaphthene ring (Figure). The cyclopentane moiety (C1–C9–C8–C18–C11 ring) and the naphthalene moiety (C1–C10 ring) of the acenaphthene ring are almost coplanar (dihedral angle = 2.06°; C1–C11–C18–C8 = 3.78(12)°). The dihedral angles between fluorobenzene rings and the naphthalene ring are 55.62° [C12–C17 ring; C1–C11–C12–C13 = −170.79(13)°] and 86.70° [C19–C24 ring; C8–C18–C19–C20 = 124.74(13)°], respectively. The dihedral angle between the best planes of the two fluorobenzene rings is 51.34(8)°. Three kinds of intramolecular non-covalent bonding interactions are observed: O–H⋯O classical hydrogen bond between hydroxy groups at 1,2-positions [1.95(2) Å, H2⋯O1], C–H⋯O non-classical hydrogen bond between H20 atom of 2-fluorophenyl moiety and oxygen atom of hydroxy group (2.32 Å, H20⋯O2), and C–F⋯π interaction between F2 atom and cyclopentane moiety [2.7602(10) Å, F2⋯Cg1; Cg1 = C1–C9–C8–C18–C11 ring]. On the other 2-fluorophenyl group, the fluorine atom is disordered over two positions with site occupancies of 0.94 and 0.06 [F1A and F1B]. Therefore, the title compound is postulated as a mixture of two components, i.e., endo-exo (F2 and F1A/H17; major component) and endo-endo (F2 and F1B/H13; minor one) types. In the crystal packing, intermolecular classical hydrogen bond between hydroxy and methoxy groups links molecules into two-fold helical molecular aggregation along the b-axis [2.25(2) Å, H1⋯O4; symmetry code: 3/2−x, 1/2+y, 1/2−z]. The two-fold helical molecular aggregations are further gathered by two bidirectional forces: the C–H⋯π non-classical hydrogen bond between a methoxy group and the naphthalene ring along c-axis [2.66 Å, H26B⋯Cg3; Cg3 = C5–C10 ring; symmetry code: 2−x, −y, −z] and a C–H⋯O non-classical hydrogen bond between the H22 atom of the 2-fluorophenyl group and the hydroxy oxygen along a-axis [2.54 Å, H22⋯O1; symmetry code: −1/2+x, 1/2−y, −1/2+z]. The hydroxy group (O2–H) that shares its hydrogen atom with the other hydroxy group (O1–H) also makes a non-classical hydrogen bond with the hydrogen atom (H–C20) forming a warped six–five–five fused tricyclic structure, at the end of which the fluorine atom (F2) occupying the opposite o-position intramolecularly interacts with the cyclopentane moiety. On the other phenyl group, the o-positioned hydrogen and fluorine atoms are free from effective interactions, which induces comparably stable two components as displayed in disorder of two atoms.


Corresponding author: Akiko Okamoto, Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan, E-mail:

Funding source: JSPS KAKENHI

Award Identifier / Grant number: JP20K05473

Funding source: Tokyo Ohka Foundation for The Promotion of Science and Technology

Award Identifier / Grant number: 216065

Acknowledgments

The authors express their gratitude to Mr Hirokazu Shiomichi and Mr Genta Takahara, Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, for their technical supports.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: JSPS KAKENHI, grant number JP20K05473 and Tokyo Ohka Foundation for The Promotion of Science and Technology, grant number 216065.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku. PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan (1998).Search in Google Scholar

2. Rigaku. CRYSTALSTRUCTURE. Rigaku Corporation, Tokyo, Japan (2010).Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

5. Burnett, M. N., Johnson, C. K ORTEPIII. Report ORNL-6895; Oak Ridgeational Laboratory: Tennessee, USA, 1996.Search in Google Scholar

6. Mido, T., Iitsuka, H., Kobayashi, M., Noguchi, K., Yonezawa, N., Okamoto, A. Fluoro group pivoting dual hydrogen bonding intramolecular bridge for 1,2-bis(2-fluorophenyl)acenaphthenediol molecule in solution: NMR spectrometrical confirmation of simultaneous participation of F–C(sp2) group to through-space-couplings with aromatic and hydroxy hydrogen atoms. Chem. Lett. 2020, 49, 295–298; https://doi.org/10.1246/cl.190903.Search in Google Scholar

7. Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K., Yonezawa, N (2,7–Dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone. Acta Crystallogr 2008, E66, o807.10.1107/S1600536810000486Search in Google Scholar PubMed PubMed Central

8. Desiraju, G. R. C–H⋯O and other weak hydrogen bonds. from crystal engineering to virtual screening. Chem. Commun. 2005, 24, 2995–3001; https://doi.org/10.1039/b504372g.Search in Google Scholar PubMed

9. Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 2002, 35, 565–573; https://doi.org/10.1021/ar010054t.Search in Google Scholar PubMed

10. Desiraju, G. R., Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, 1999.Search in Google Scholar

11. Taylor, R., Kennard, O. Crystallographic evidence for the existence of C–H⋯O, C–H⋯N, and C–H⋯Cl hydrogen bonds. J. Am. Chem. Soc. 1982, 104, 5063–5070; https://doi.org/10.1021/ja00383a012.Search in Google Scholar

12. Okamoto, A., Yonezawa, N. Unique and specific reaction behavior and characteristic spatial organization of non-coplanarly aromatic-ring- accumulated molecular compounds. J. Synth. Org. Chem. 2015, 73, 339–360; https://doi.org/10.5059/yukigoseikyokaishi.73.339.Search in Google Scholar

13. Muto, T., Iida, K., Noguchi, K., Yonezawa, N., Okamoto, A. Crystal structure and Hirshfeld surface analysis of 2-hydroxy-7-methoxy-1,8-bis(2,4,6-trichlorobenzoyl)naphthalene. Acta Crystallogr. 2019, E75, 1418–1422; https://doi.org/10.1107/s2056989019012118.Search in Google Scholar PubMed PubMed Central

14. Kobayashi, M., Iida, K., Iitsuka, H., Li, K., Yonezawa, N., Okamoto, A. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate C40H28O8. Z. Krystallogr. N. Cryst. Struct. 2021, 236, 945–947. https://doi.org/10.1515/ncrs-2021-0160.Search in Google Scholar

15. Iida, K., Sakamoto, R., Li, K., Kobayashi, M., Iitsuka, H., Yonezawa, N., Okamoto, A. Crystal structure of bis(1,8-dibenzoyl-7-methoxynaphthalen-2-yl)terephthalate: terephthalate phenylene moiety acts as biacceptor of bidirectional C–H⋯π non-classical hydrogen bonds. Eur. J. Chem 2021, 12, 147–153; https://doi.org/10.5155/eurjchem.12.2.147-153.2114.Search in Google Scholar

16. Iitsuka, H., Li, K., Kobayashi, M., Iida, K., Yonezawa, N., Okamoto, A. Crystal structure of 1,2-bis(4-fluorophenyl)-1-hydroxy-2,3,8-trimethoxyacenaphthene: formation of a five-membered intramolecular O–H⋯O hydrogen-bonded ring. Acta Crystallogr. 2021, E77, 175–179; https://doi.org/10.1107/s2056989021000669.Search in Google Scholar

17. Mido, T., Iitsuka, H., Yokoyama, T., Takahara, G., Ogata, K., Yonezawa, N., Okamoto, A. Crystal Structure of (1R,2S)-1,2-bis(4-chlorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol: tetrameric string of four conformers connected by classical hydrogen bonds and molecular accumulation alignment by linking of the tetramers with the aid of non-classical hydrogen bonds. Eur. Chem. Bull. 2017, 6, 273–280; https://doi.org/10.17628/ecb.2017.6.273-280.Search in Google Scholar

Received: 2021-08-01
Accepted: 2021-08-16
Published Online: 2021-09-06
Published in Print: 2021-12-20

© 2021 Hiroaki Iitsuka et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2021-0314/html
Scroll to top button