Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 2, 2019

Potential of kraft lignin as an additive in briquette production

  • Walter Torezani Neto Boschetti EMAIL logo , Ana Márcia Macedo Ladeira Carvalho , Angélica de Cássia Oliveira Carneiro , Larissa Carvalho Santos and Lucas de Barros Quaresma Poyares

Abstract

Lignin, a renewable product with high potential for various applications, can be recovered from kraft black liquor by precipitation in acid medium. The objective of this study was to evaluate the effect of the addition of kraft lignin to wood biomass on the properties of briquettes. Hymenolobium petraeum, Eucalyptus, and Pinus biomasses received the addition of 0, 3, 6, 9, and 12 % (w/w) of kraft lignin, and briquettes were manufactured. Wood biomasses and briquettes were characterized chemically and physically. Addition of kraft lignin positively influenced the apparent density, energy density, and mechanical resistance of briquettes. Furthermore, kraft lignin increased the calorific value of briquettes. Addition of 6 % (w/w) of kraft lignin was sufficient to improve the quality properties of briquettes, which demonstrates the great potential of kraft lignin as an additive in briquette production.

Funding statement: We thank the Federal University of Viçosa (Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil), and Suzano Pulp and Paper Inc. (Brazil) for supporting this study.

  1. Conflict of interest: The authors declare no conflicts of interest.

References

American Society for Testing Materials – ASTM. (2001) D1762-84: Standard test method for chemical analysis of wood charcoal. Philadelphia.Search in Google Scholar

Araújo, S., Boas, M.A.V., Neiva, D.M., Carneiro, A.C., Vital, B., Breguez, M., Pereira, H. (2016) Effect of a mild torrefaction for production of eucalypt wood briquettes under different compression pressures. Biomass Bioenergy 90:181–186.10.1016/j.biombioe.2016.04.007Search in Google Scholar

Associação Brasileira de Normas Técnicas – ABNT. (2009) NBR ISO 11093-9. Determination of flexural strength. Rio de Janeiro, 2009, 3 p.Search in Google Scholar

Belgacem, M.N., Blayo, A., Gandini, A. (2003) Organosolv lignin a filler in inks, varnishes and paints. Ind. Crop. Prod. 18(2):145–153.10.1016/S0926-6690(03)00042-6Search in Google Scholar

Berghel, J., Frodeson, S., Granström, K., Renström, R., Ståhl, M., Nordgren, D., Tomani, P. (2013) The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life. Fuel Process. Technol. 112:64–69.10.1016/j.fuproc.2013.02.011Search in Google Scholar

Brand, M.A. Forest Biomass Energy. Interciência, 2010, 131 p.Search in Google Scholar

Cochran, W.G. (1950) The comparison of percentages in matched samples. Biometrika 37(3/4):256–266.10.1093/biomet/37.3-4.256Search in Google Scholar

Demirbas, A. (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 20(1):105–111.10.1260/014459802760170420Search in Google Scholar

Deutsches Institut Für Normung – DIN. (2010a) DINEN 15103. Determination of bulk density. CEN, Berlin, 14 pp.Search in Google Scholar

Deutsches Institut Für Normung – DIN. (2010b) DIN EN 14918. Determination of calorific value. CEN, Berlin, 63 pp.Search in Google Scholar

Deutsches Institut Für Normung – DIN. (2011a) DIN EN 15104. Determination of total content of carbon, hydrogen and nitrogen – Instrumental methods. CEN, Berlin, 2011, 15 pp.Search in Google Scholar

Deutsches Institut Für Normung – DIN. (2011b) DIN EN 14961-3. Solid biofuels – Fuel specifications and classes – Part 3: Wood briquettes for non-industrial use; German version. Berlin: CEN, 2011, 1 p.Search in Google Scholar

Emmons, H.W., Atreya, A. (1982) The science of wood combustion. Proc. Indian Acad. ScL 5(4):259–268.10.1007/BF02904581Search in Google Scholar

European Committee for Standardization – CEN. (2009) EN 14775. Solid biofuels – Determination of ash content. 12 pp.Search in Google Scholar

Ferreira, J.C. (2017) Synthesis of Urea-Formaldehyde Adhesives with the Addition of Kraft Lignin and Nanocrystalline Cellulose. Ph. D. Thesis, Federal University of Viçosa, Brasil.Search in Google Scholar

Garcia, H.F., Martín, J.F., Rodríguez, J.J. (1984) Possibilities for the use of lignin in the chemical industry. Ing. Quím. 187:249–254.Search in Google Scholar

Gellerstedt, G. (2015) Softwood kraft lignin: Raw material for the future. Ind. Crop. Prod. 77:845–854.10.1016/j.indcrop.2015.09.040Search in Google Scholar

Gellerstedt, G., Majtnerova, A., Zhang, L. (2004) Towards a new concept of lignin condensation in kraft pulping. Initial Results. C. R., Biol. 327:817–826.10.1016/j.crvi.2004.03.011Search in Google Scholar PubMed

Gellerstedt, G., Sjöholm, E., Brodin, I. (2010) The wood-based biorefinery: a source of carbon fiber? Open Agric. J. 3:119–124.10.2174/1874331501004010119Search in Google Scholar

Goldschmid, O. (1971) Ultravioleta spectra. In: Lignins: Occurrence, Formation, Structure and Reactions, Eds. Sarkanen, K., Ludwing, C.H., J. Wiley, New York. pp. 241–298.Search in Google Scholar

Gomide, J.L., Demuner, B.J. (1986) Determination of lignin content in wood: modified Klason method. O Papel 47(1):36–38.Search in Google Scholar

Gouvêa, A.F.G., Silva, C.M., Carneiro, A.C.O., Freitas, F.P., Carvalho, A.M.M.L., Gomide, J.L. (2010) Production of briquettes from wood waste and black liquor kraft lignin: first studies. In: Brazilian Meeting on Wood and Wood Structure, Lavras, July 25–28, Minas Gerais, Brasil.Search in Google Scholar

Grace, T.M., Malcolm, E.W. (1989) In: Alkaline pulping, vol. 5. Ed. Kocurek, M.J. Pulp and Paper Manufacture, TAPPI, Atlanta; CPPA, Montreal, 15–17, 45–54.Search in Google Scholar

Jablonský, M., Ház, A., Orságová, A., Botková, M., Šmatko, L., Kočiš, J. (2013) Relationships between elemental carbon contents and heating values of lignins. In: 4th International Conference Renewable Energy Sources, Tatranské Matliare, May 21–23, 2013, High Tatras, Slovak Republic.Search in Google Scholar

Kubo, S., Kadla, J.F. (2004) Poly(ethylene oxide)/Organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37(18):6904–6911.10.1021/ma0490552Search in Google Scholar

Laurichesse, S., Avérous, L. (2014) Chemical modification of lignins: Towards biobased polymers. Top. Issue Biomater. 39(7):1266–1290.10.1016/j.progpolymsci.2013.11.004Search in Google Scholar

Lilliefors, H.W. (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318):399–402.10.1080/01621459.1967.10482916Search in Google Scholar

Maki, K., Hindle, P.H., Kouisni, L., Paleologou, M. (2012) The FPI innovations lignin demonstration plant: process description and lignin products. In: TAPPI PEERS Conference. pp. 1864–1872.Search in Google Scholar

Morais, S.A.L., Nascimento, E.A., Melo, D.C. (2005) Chemical analysis of Pinus oocarpa wood part I – quantification of macromolecular components and volatile extractives. Rev. Árvore 29(3):461–470.10.1590/S0100-67622005000300014Search in Google Scholar

Oliveira, A.C., Carneiro, A.C.O., Vital, B.R., Almeida, W., Pereira, B.L.C., Cardoso, M.T. (2010) Quality parameters of Eucalyptus pellita F. Muell. Wood and charcoal. Sci. For. 38(87):431–439.Search in Google Scholar

Onabanjo, T., Kolios, A.J., Patchigolla, K., Wagland, S.T., Fidalgo, B., Jurado, N., Hanak, D.P., Manovic, V., Parker, A., McAdam, E., Williams, L., Tyrrel, S., Williams, L. (2016) An experimental investigation of the combustion performance of human faeces. Fuel 184:780–791.10.1016/j.fuel.2016.07.077Search in Google Scholar PubMed PubMed Central

Pereira, B.L.C., Carneiro, A.C.O., Carvalho, A.M.M.L., Colodette, J.L., Oliveira, A.C., Fontes, M.P.F. (2013) Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources 8(3):4574–4592.10.15376/biores.8.3.4574-4592Search in Google Scholar

Pereira, B.L.C., Carneiro, A.C.O., Carvalho, A.M.M.L., Vital, B.R., Oliveira, A.C., Canal, W.D. (2016) Influence of adding kraft lignin in eucalyptus pellets properties. Floresta 46(2):235–242.10.5380/rf.v46i2.44936Search in Google Scholar

Protásio, T.P., Bufalino, L., Tonoli, G.H.D., Couto, A.M., Trugilho, P.F., Júnior, M.G. (2011) Relation between higher heating value and elemental and mineral biomass plant components. Pesquis. Florest. Bras. 31(66):113.10.4336/2011.pfb.31.66.113Search in Google Scholar

Regazzi, A. (1993) Test to identify the identity of regression models and equality of some parameters in an orthogonal polynomial model. Ceres 40:176–195.Search in Google Scholar

Regazzi, A.J., Silva, C.H.O. (2004) Test to verify the equality of parameters and the identity of nonlinear regression models. I. Data in the completely randomized design. Rev. Mat. Estat. 22(3):33–45.Search in Google Scholar

Santos, F., Colodette, J., Queiroz, J.H. Bioenergy and Biorefinery – Sugarcane and Forest Species. UFV, 2013, 551 pp.Search in Google Scholar

Senyo, W.C., Creamer, A.W., Wu, C.F., Lora, J.H. (1996) The use of organosolv lignin to reduce press vent formaldehyde emissions in the manufacture of wood composites. For. Prod. J. 46(6):73–77.Search in Google Scholar

Silva, D.A.D., Almeida, V.C., Viana, L.C., Klock, U., Muñiz, G.I.B. (2014) Evaluation of the energy-related properties of tropical wood waste using NIR spectroscopy. Floresta Ambient. 21(4):561–568.10.1590/2179-8087.043414Search in Google Scholar

Stolarski, M.J., Szczukowski, S., Tworkowski, J., Krzyżaniak, M., Gulczyński, P., Mleczek, M. (2013) Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 57:20–26.10.1016/j.renene.2013.01.005Search in Google Scholar

Technical Association of the Pulp and Paper Industry – TAPPI. (1996) T257 cm-85. Sampling and preparing wood for analysis. Tappi Technology Park, Atlanta, 1996.Search in Google Scholar

Technical Association of the Pulp and Paper Industry – TAPPI. (1997) T264 cn-97. Preparation of wood for chemical analysis. Tappi Press, Atlanta, 1997.Search in Google Scholar

Tomani, P. (2010) The lignoboost process. Cellul. Chem. Technol. 44(1–3):53–58.Search in Google Scholar

Trugilho, P.F., Rosado, S., Bianchi, M., Napoli, A. (2012) Elemental analysis of clones of Eucalyptus wood. Biomassa Energ. 5(1):53–58.Search in Google Scholar

Turns, S.R. An Introduction to Combustion: Concepts and Applications. 3rd edition. McGraw-Hill, 2013. 2011. 752 pp.Search in Google Scholar

Valadares, L.B., Freitas, F.P., Gouvêa, A.F.G., Silva, C.M., Carvalho, A.M.M.L., Carneiro, A.C.O., Rodrigues, V.J. (2011) Potential lignin kraft black liquor for the production of briquettes. In: 6 International Bioenergy Congress, Curitiba, August 16–19, Paraná, Brasil.Search in Google Scholar

Vital, B.R. Methods of Determining Wood Density. Viçosa, 1984, 21 pp.Search in Google Scholar

Received: 2018-05-14
Accepted: 2018-11-08
Published Online: 2019-02-02
Published in Print: 2019-03-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.1515/npprj-2018-0002/html
Scroll to top button