Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 20, 2021

Polypropylene hybrid composites: Effect of reinforcement of sisal and carbon fibre on mechanical, thermal and morphological properties

  • Jyoti Agarwal EMAIL logo , Smita Mohanty and Sanjay K. Nayak

Abstract

Polypropylene (PP)/sisal fibre (SF)/carbon fibre (CF) hybrid composites were prepared by melt blending process at a variable weight percentage (wt%) of carbon: sisal fibre loading (20:10, 15:15, 10:20, and 5:25). MA-g-PP (MgP) as a compatibiliser was used to improve the dispersion of the fibres within the PP matrix. The composites were subjected to mechanical tests to optimize the fibre content of CF: SF. Incorporation of 20 wt% of CF and 10 wt% of SF with 5 wt% MgP resulted in higher mechanical performance of about 67.02 and 112% over that of PP/SF composite. Similarly, the impact strength was found to be optimum which enhanced to the tune of 39.62% as compared with PP/SF composites. Halpin Tsai model was used to compare the theoretical tensile modulus of PP/SF/MgP composites and PP/SF/CF/MgP hybrid composites with experimental evaluated values. Fracture toughness parameters such as K IC (critical stress intensity factor) and G IC (critical strain energy release rate) are determined for PP/SF/MgP composites and PP/SF/CF/MgP hybrid composites and compared by using single edge notch test. DSC study showed higher melting temperature (T m ) of PP/SF/CF/MgP composites as compared to PP revealing the enhancement in thermal stability. TGA/DTG study revealed the synergistic effect of the hybrid composite thus confirming the hybridisation effect of the system. DMA study showed that the hybridisation of CF and SF within the matrix polymer contributes to an increase in the storage modulus (Eʹ). Morphological observation by SEM confirmed that the carbon fibres and sisal fibres are well uniformly dispersed within the PP matrix, in the presence of MgP.


Corresponding author: Jyoti Agarwal, Laboratory for Advanced Research in Polymeric Materials (LARPM), School for Advanced Research in Polymers (SARP), Central Institute of Plastics Engineering and Technology, B-25, CNIC, Patia, Bhubaneswar, Odisha 751024, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Anuar, H., Ahmad, S., Rasid, R., Ahmad, A., Busu, W. N. Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fibre and kenaf fibre hybrid composites. J. Appl. Polym. Sci. 2008, 107, 4043–4052. https://doi.org/10.1002/app.27441.Search in Google Scholar

2. Arbelaiz, A., Fernandez, B., Ramos, J. A., Retegi, A., Llano-Ponte, R., Mondragon, I. Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos. Sci. Technol. 2005, 65, 1582–1592. https://doi.org/10.1016/j.compscitech.2005.01.008.Search in Google Scholar

3. Ali, R., Iannace, S., Nicolais, L. Effect of processing conditions on mechanical and viscoelastic properties of biocomposites. J. Appl. Polym. Sci. 2003, 88, 1637–1642. https://doi.org/10.1002/app.11739.Search in Google Scholar

4. Keener, T. J., Stuart, R. K., Brown, T. K. Maleated coupling agents for natural fibre composites. Compos. Appl. Sci. Manuf. 2004, 35, 357–362. https://doi.org/10.1016/j.compositesa.2003.09.014.Search in Google Scholar

5. Fu, S. Y., Lauke, B., Mäder, E., Yue, C. Y., Hu, X. Tensile properties of short-glass-fibre-and short-carbon-fibre-reinforced polypropylene composites. Compos. Appl. Sci. Manuf. 2000, 31, 1117–1125. https://doi.org/10.1016/s1359-835x(00)00068-3.Search in Google Scholar

6. Thwe, M. M., Liao, K. Effects of environmental aging on the mechanical properties of bamboo–glass fibre reinforced polymer matrix hybrid composites. Compos. Appl. Sci. Manuf. 2002, 33, 43–52. https://doi.org/10.1016/s1359-835x(01)00071-9.Search in Google Scholar

7. Samal, S. K., Mohanty, S., Nayak, S. K. Polypropylene–bamboo/glass fibre hybrid composites: fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. J. Reinforc. Plast. Compos. 2009, 28, 2729–2747. https://doi.org/10.1177/0731684408093451.Search in Google Scholar

8. Le Guen, M. J., Newman, R. H., Fernyhough, A., Emms, G. W., Staiger, M. P. The damping–modulus relationship in flax–carbon fibre hybrid composites. Compos. B Eng. 2016, 89, 27–33. https://doi.org/10.1016/j.compositesb.2015.10.046.Search in Google Scholar

9. Summerscales, J., Short, D. Carbon fibre and glass fibre hybrid reinforced plastics. Composites 1978, 9, 157–166. https://doi.org/10.1016/0010-4361(78)90341-5.Search in Google Scholar

10. Kalaprasad, G., Joseph, K., Thomas, S. Influence of short glass fibre addition on the mechanical properties of sisal reinforced low density polyethylene composites. J. Compos. Mater. 1997, 31, 509–527. https://doi.org/10.1177/002199839703100504.Search in Google Scholar

11. Swolfs, Y., Shi, J., Meerten, Y., Hine, P., Ward, I., Verpoest, I., Gorbatikh, L. The importance of bonding in intralayer carbon fibre/self-reinforced polypropylene hybrid composites. Compos. Appl. Sci. Manuf. 2015, 76, 299–308. https://doi.org/10.1016/j.compositesa.2015.06.017.Search in Google Scholar

12. Sarasini, F., Tirillò, J., D’Altilia, S., Valente, T., Santulli, C., Touchard, F., Chocinski-Arnault, L., Mellier, D., Lampani, L., Gaudenzi, P. Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Compos. B Eng. 2016, 91, 144–153. https://doi.org/10.1016/j.compositesb.2016.01.050.Search in Google Scholar

13. Khanam, P. N., Khalil, H. A., Jawaid, M., Reddy, G. R., Narayana, C. S., Naidu, S. V. Sisal/carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties. J. Polym. Environ. 2010, 18, 727–733.10.1007/s10924-010-0210-3Search in Google Scholar

14. Balakrishnan, P., John, M. J., Pothen, L., Sreekala, M. S., Thomas, S. Natural fibre and polymer matrix composites and their applications in aerospace engineering. In Advanced composite materials for aerospace engineering; Elsevier: India, 2016; pp. 365–383.10.1016/B978-0-08-100037-3.00012-2Search in Google Scholar

15. Nayak, S. K., Mohanty, S., Samal, S. K. Influence of short bamboo/glass fibre on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater. Sci. Eng., A 2009, 523, 32–38. https://doi.org/10.1016/j.msea.2009.06.020.Search in Google Scholar

16. Botev, M., Betchev, H., Bikiaris, D., Panayiotou, C. Mechanical properties and viscoelastic behavior of basalt fibre‐reinforced polypropylene. J. Appl. Polym. Sci. 1999, 74, 523–531. https://doi.org/10.1002/(sici)1097-4628(19991017)74:3<523::aid-app7>3.0.co;2-r.10.1002/(SICI)1097-4628(19991017)74:3<523::AID-APP7>3.0.CO;2-RSearch in Google Scholar

17. Rahman, N. A., Hassan, A., Yahya, R., Lafia-Araga, R. A., Hornsby, P. R. Polypropylene/glass fibre/nanoclay hybrid composites: morphological, thermal, dynamic mechanical and impact behaviors. J. Reinforc. Plast. Compos. 2012, 31, 1247–1257. https://doi.org/10.1177/0731684412456445.Search in Google Scholar

18. Sahoo, S. K., Mohanty, S., Nayak, S. K. Toughened bio-based epoxy blend network modified with transesterified epoxidized soybean oil: synthesis and characterization. RSC Adv. 2015, 5, 13674–13691. https://doi.org/10.1039/c4ra11965g.Search in Google Scholar

19. Qiu, W., Zhang, F., Endo, T., Hirotsu, T. Preparation and characteristics of composites of high‐crystalline cellulose with polypropylene: effects of maleated polypropylene and cellulose content. J. Appl. Polym. Sci. 2003, 87, 337–345. https://doi.org/10.1002/app.11446.Search in Google Scholar

20. Sanadi, A. R., Caulfield, D. F., Jacobson, R. E., Rowell, R. M. Renewable agricultural fibres as reinforcing fillers in plastics: mechanical properties of kenaf fibre-polypropylene composites. Ind. Eng. Chem. Res. 1995, 34, 1889–1896. https://doi.org/10.1021/ie00044a041.Search in Google Scholar

21. Samal, S. K., Mohanty, S., Nayak, S. K. Banana/glass fibre-reinforced polypropylene hybrid composites: fabrication and performance evaluation. Polym. Plast. Technol. Eng. 2009, 48, 397–414. https://doi.org/10.1080/03602550902725407.Search in Google Scholar

22. Biswal, M., Mohanty, S., Nayak, S. K. Influence of organically modified nanoclay on the performance of pineapple leaf fiber‐reinforced polypropylene nanocomposites. J. Appl. Polym. Sci. 2009, 114, 4091–4103.10.1002/app.31121Search in Google Scholar

23. Czigány, T. Special manufacturing and characteristics of basalt fibre reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos. Sci. Technol. 2006, 66, 3210–3220. https://doi.org/10.1016/j.compscitech.2005.07.007.Search in Google Scholar

24. Joseph, K., Thomas, S., Pavithran, C., Brahmakumar, M. Tensile properties of short sisal fibre‐reinforced polyethylene composites. J. Appl. Polym. Sci. 1993, 47, 1731–1739. https://doi.org/10.1002/app.1993.070471003.Search in Google Scholar

25. Ghavami, K., Toledo Filho, R. D., Barbosa, N. P. Behaviour of composite soil reinforced with natural fibres. Cement Concr. Compos. 1999, 21, 39–48. https://doi.org/10.1016/s0958-9465(98)00033-x.Search in Google Scholar

26. Avella, M., Casale, L., Dell’erba, R., Focher, B., Martuscelli, E., Marzetti, A. Broom fibres as reinforcing materials for polypropylene‐based composites. J. Appl. Polym. Sci. 1998, 68, 1077–1089. https://doi.org/10.1002/(sici)1097-4628(19980516)68:7<1077::aid-app5>3.0.co;2-c.10.1002/(SICI)1097-4628(19980516)68:7<1077::AID-APP5>3.0.CO;2-CSearch in Google Scholar

27. Krishnaiah, P., Ratnam, C. T., Manickam, S. Improved mechanical properties and theoretical prediction of Young’s modulus of polylactide composites reinforced with sisal fibers. Mater. Today: Proc. 2018, 5, 22494–22505.10.1016/j.matpr.2018.06.621Search in Google Scholar

28. Zare, Y. Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym. Test. 2016, 51, 69–73. https://doi.org/10.1016/j.polymertesting.2016.02.010.Search in Google Scholar

29. Koricho, E. G., Khomenko, A., Haq, M., Drzal, L. T., Belingardi, G., Martorana, B. Effect of hybrid (micro-and nano-) fillers on impact response of GFRP composite. Compos. Struct. 2015, 134, 789–798. https://doi.org/10.1016/j.compstruct.2015.08.106.Search in Google Scholar

30. Singh, B., Gupta, M., Verma, A. The durability of jute fibre-reinforced phenolic composites. Compos. Sci. Technol. 2000, 60, 581–589. https://doi.org/10.1016/s0266-3538(99)00172-4.Search in Google Scholar

31. Oksman, K., Clemons, C. Mechanical properties and morphology of impact modified polypropylene–wood flour composites. J. Appl. Polym. Sci. 1998, 67, 1503–1513. https://doi.org/10.1002/(sici)1097-4628(19980228)67:9<1503::aid-app1>3.0.co;2-h.10.1002/(SICI)1097-4628(19980228)67:9<1503::AID-APP1>3.0.CO;2-HSearch in Google Scholar

32. Ahmad, Z., Ansell, M., Smedley, D. Fracture toughness of thixotropic and room temperature cured epoxy-based adhesives for in situ timber bonding. Int. J. Adhesion Adhes. 2010, 30, 539–549. https://doi.org/10.1016/j.ijadhadh.2010.05.005.Search in Google Scholar

33. Thwe, M. M., Liao, K. Durability of bamboo-glass fibre reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003, 63, 375–387. https://doi.org/10.1016/s0266-3538(02)00225-7.Search in Google Scholar

34. Mohanty, S., Verma, S. K., Nayak, S. K. Rheological characterization of PP/jute composite melts. J. Appl. Polym. Sci. 2006, 99, 1476–1484.10.1002/app.22661Search in Google Scholar

35. Krishnaiah, P., Ratnam, C. T., Manickam, S. Morphology water absorption and biodegradable properties of polylactide biocomposites reinforced with sisal fibers. Mater. Today: Proc. 2018, 5, 22506–22516.10.1016/j.matpr.2018.06.622Search in Google Scholar

36. Kumar, S., Doshi, H., Srinivasarao, M., Park, J. O., Schiraldi, D. A. Fibres from polypropylene/nano carbon fibre composites. Polymer 2002, 43, 1701–1703. https://doi.org/10.1016/s0032-3861(01)00744-3.Search in Google Scholar

37. Siakeng, R., Jawaid, M., Asim, M., Saba, N., Sanjay, M. R., Siengchin, S., Fouad, H. Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: evaluation of mechanical, morphological, thermal and physical properties. Express Polym. Lett. 2020, 14.10.3144/expresspolymlett.2020.59Search in Google Scholar

38. Dhand, V., Mittal, G., Rhee, K. Y., Park, S. J., Hui, D. A short review on basalt fibre reinforced polymer composites. Compos. B Eng. 2015, 73, 166–180.10.1016/j.compositesb.2014.12.011Search in Google Scholar

39. Chuai, C., Almdal, K., Poulsen, L., Plackett, D. Conifer fibres as reinforcing materials for polypropylene‐based composites. J. Appl. Polym. Sci. 2001, 80, 2833–2841. https://doi.org/10.1002/app.1400.Search in Google Scholar

40. Amash, A., Zugenmaier, P. Thermal and dynamic mechanical investigations on fibre‐reinforced polypropylene composites. J. Appl. Polym. Sci. 1997, 63, 1143–1154. https://doi.org/10.1002/(sici)1097-4628(19970228)63:9<1143::aid-app6>3.0.co;2-h.10.1002/(SICI)1097-4628(19970228)63:9<1143::AID-APP6>3.0.CO;2-HSearch in Google Scholar

41. Krishnaiah, P., Ratnam, C. T., Manickam, S. Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrason. Sonochem. 2017, 34, 729–742.10.1016/j.ultsonch.2016.07.008Search in Google Scholar

42. Agarwal, J., Mohanty, S., Nayak, S. K. Valorization of pineapple peel waste and sisal fiber: study of cellulose nanocrystals on polypropylene nanocomposites. J. Appl. Polym. Sci. 2020, 137, 49291.10.1002/app.49291Search in Google Scholar

43. Agarwal, J., Mohanty, S., Nayak, S. K. Influence of cellulose nanocrystal/sisal fiber on the mechanical, thermal, and morphological performance of polypropylene hybrid composites. Polym. Bull. 2020, 1–27.10.1007/s00289-020-03178-4Search in Google Scholar

44. Duy Tran, T., Dang Nguyen, M., Thuc, C. N., Thuc, H. H., Dang Tan, T. Study of mechanical properties of composite material based on polypropylene and Vietnamese rice husk filler. J. Chem. 2013, 2013.10.1155/2013/752924Search in Google Scholar

45. Weiss, R. A. Mechanical properties of polypropylene reinforced with short graphite fibres. Polym. Compos. 1981, 2, 95–101.10.1002/pc.750020303Search in Google Scholar

46. Joseph P.V., J., Mathew, G., Joseph, K., Groeninckx, G., Thomas, S. Dynamic mechanical properties of shortsisal fibre reinforced polypropylene composites. Compos. Appl. Sci. Manuf. 2003, 34, 275–290.10.1016/S1359-835X(02)00020-9Search in Google Scholar

47. Saha, A. K., Das, S., Bhatta, D., Mitra, B. C. Study of jute fibre reinforced polyester composites by dynamic mechanical analysis. J. Appl. Polym. Sci. 1999, 71, 1505–1513.10.1002/(SICI)1097-4628(19990228)71:9<1505::AID-APP15>3.0.CO;2-1Search in Google Scholar

48. Ibarra, L., Panos, D. Dynamic properties of thermoplastic butadiene–styrene (SBS) and oxidized short carbon fibre composite materials. J. Appl. Polym. Sci. 1998, 67, 1819–1826.10.1002/(SICI)1097-4628(19980307)67:10<1819::AID-APP15>3.0.CO;2-RSearch in Google Scholar

49. Dong, S., Gauvin, R. Application of dynamic mechanical analysis for the study of the interfacial region in carbon fibre/epoxy composite materials. Polym. Compos., 14, 414–420.10.1002/pc.750140508Search in Google Scholar

50. Agarwal, J., Sahoo, S., Mohanty, S., Nayak, S. K. Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: a review. J. Thermoplast. Compos. Mater. 2020, 33, 978–1013.10.1177/0892705718815530Search in Google Scholar

Received: 2019-12-05
Accepted: 2021-03-30
Published Online: 2021-04-20
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2019-0355/html
Scroll to top button